Formulation and Evaluation of Sustained Release Matrix Tablets of Aceclofenac

Keywords: Aceclofenac, Sustained release matrix tablet, Controlled release tablet


This study aimed to improve the dissolution rate of aceclofenac and release the drug in a controlled manner over a period of 24 hours. Matrix tablets were prepared by direct compression method, using hydrophilic polymers (HPMC/guar gum). Matrix tablets were prepared by wet granulation method using different hydrophilic polymers (HPMC/guar gum). Tablets were evaluated for in vitro drug release profile in phosphate buffer with pH 6.8 (without enzymes). The thickness and hardness of prepared tablets were 3.23 ± 0.035 to 3.28 ± 0.008 mm and 3.26 ± 0.115 to 3.60 ± 0.200 kg/cm2, respectively. The friability was within the acceptable limits of pharmacopoeial specifications (0.31 to 0.71%), which indicates the good mechanical strength of the tablets. Drug release was retarded with an increase in polymer concentration due to the gelling property of polymers. The in vitro drug release from the proposed system was best explained by Higuchi’s model, indicating that drug release from tablets displayed a diffusion-controlled mechanism. The results clearly indicate that guar gum could be a potential hydrophilic carrier in developing oral controlled drug delivery systems. Based on the study results, formulations F8 was selected as the best formulation.


Download data is not yet available.


1. Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics. 2019;11(3):129. doi:10.3390/pharmaceutics11030129
2. Wheless JW, Phelps SJ. A Clinician's Guide to Oral Extended-Release Drug Delivery Systems in Epilepsy. J Pediatr Pharmacol Ther. 2018;23(4):277-92. doi:10.5863/1551-6776-23.4.277
3. Menditto E, Orlando V, Rosa GD, Minghetti P, Musazzi UM, Cahir C, et al. Patient Centric Pharmaceutical Drug Product Design-The Impact on Medication Adherence. Pharmaceutics. 2020;12(1):44. doi:10.3390/pharmaceutics12010044
4. Laffleur F, Keckeis V. Advances in drug delivery systems: Work in progress still needed? Int J Pharm X. 2020;2:100050. doi:10.1016/j.ijpx.2020.100050
5. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: An updated review. Int J Pharm Investig. 2012;2(1):2-11. doi:10.4103/2230-973X.96920
6. Leucuta SE. Drug delivery systems with modified release for systemic and biophase bioavailability. Curr Clin Pharmacol. 2012;7(4):282-317. doi:10.2174/157488412803305786
7. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071. doi:10.1038/natrevmats.2016.71
8. Shah KU, Khan GM. Regulating Drug Release Behavior and Kinetics from Matrix Tablets Based on Fine Particle-Sized Ethyl Cellulose Ether Derivatives: An In Vitro and In Vivo Evaluation. ScientificWorldJournal. 2012;2012:842348. doi:10.1100/2012/842348
9. Rane MM, Bajaj A. Development and optimisation of novel oral formulation of an opioid analgesic using central composite design. Cogent Med. 2017;4(1):1326210. doi:10.1080/2331205X.2017.1326210
10. Eddy AM. Controlled release matrix drug delivery system – A review. Int J Allied Med Sci Clin Res. 2017;5(2):384-98.
11. Trofimiuk M, Wasilewska K, Winnicka K. How to Modify Drug Release in Paediatric Dosage Forms? Novel Technologies and Modern Approaches with Regard to Children’s Population. Int J Mol Sci. 2019;20(13):3200. doi:10.3390/ijms20133200
12. Samie M, Bashir S, Abbas J, Khan S, Aman N, Jan H, et al. Design, Formulation and In Vitro Evaluation of Sustained-release Tablet Formulations of Levosulpiride. Turk J Pharm Sci. 2018;15(3):309-18. doi:10.4274/tjps.29200
13. Iglesias N, Galbis E, Romero-Azogil L, Benito E, Lucas R, García-Martín MG, et al. In-Depth Study into Polymeric Materials in Low-Density Gastroretentive Formulations. Pharmaceutics. 2020;12(7):636. doi:10.3390/pharmaceutics12070636
14. Banerjee A, Verma PRP, Gore S. Controlled Porosity Solubility Modulated Osmotic Pump Tablets of Gliclazide. AAPS PharmSciTech. 2015;16(3):554-68. doi:10.1208/s12249-014-0246-0
15. Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics. 2018;10(3):74. doi:10.3390/pharmaceutics10030074
16. Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics. 2015;7(4):438-70. doi:10.3390/pharmaceutics7040438
17. Nardi-Ricart A, Nofrerias-Roig I, Suñé-Pou M, Pérez-Lozano P, Miñarro-Carmona M, García-Montoya E, et al. Formulation of Sustained Release Hydrophilic Matrix Tablets of Tolcapone with the Application of Sedem Diagram: Influence of Tolcapone’s Particle Size on Sustained Release. Pharmaceutics. 2020;12(7):674. doi:10.3390/pharmaceutics12070674
18. Yang JH, Suk KS, Lee BH, Jung WC, Kang YM, Kim JH, et al. Efficacy and Safety of Different Aceclofenac Treatments for Chronic Lower Back Pain: Prospective, Randomized, Single Center, Open-Label Clinical Trials. Yonsei Med J. 2017;58(3):637-43. doi:10.3349/ymj.2017.58.3.637
19. Ricciotti E, FitzGerald GA. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011. 31(5):986-1000. doi:10.1161/ATVBAHA.110.207449
20. Moon YW, Kang SB, Kim TK. Lee MC. Efficacy and Safety of Aceclofenac Controlled Release in Patients with Knee Osteoarthritis: A 4-week, Multicenter, Randomized, Comparative Clinical Study. Knee Surg Relat Res. 2014;26(1):33-42. doi:10.5792/ksrr.2014.26.1.33
21. Meng X, Oh ES, Park MS, Kim D, Kim JH, Kim CO. Comparison of pharmacokinetics and safety of fixed-dose combination of SKI306X and aceclofenac versus separate tablets in healthy subjects. Transl Clin Pharmacol. 2017;25(4):196-201. doi:10.12793/tcp.2017.25.4.196
22. Brogden RN, Wiseman LR. Aceclofenac. A review of its pharmacodynamic properties and therapeutic potential in the treatment of rheumatic disorders and in pain management. Drugs. 1996;52(1):113-24. doi:10.2165/00003495-199652010-00008
23. Rahim H, Sadiq A, Ullah R, Bari A, Amin F, Farooq U, et al. Formulation of Aceclofenac Tablets Using Nanosuspension as Granulating Agent: An Attempt to Enhance Dissolution Rate and Oral Bioavailability. Int J Nanomedicine. 2020;15:8999-9009. doi:10.2147/IJN.S270746
24. Yasmin R, Shoaib MH, Ahmed FR, Qazi F, Ali H, Zafar F. Aceclofenac fast dispersible tablet formulations: Effect of different concentration levels of Avicel PH102 on the compactional, mechanical and drug release characteristics. PLoS One. 2020;15(2):e0223201. doi:10.1371/journal.pone.0223201
25. Mankala SK, Korla AC, Gade S. Development and evaluation of aceclofenac-loaded mucoadhesive microcapsules. J Adv Pharm Technol Res. 2011;2(4):245-54. doi:10.4103/2231-4040.90881
26. Gupta MM, Khoorban A, Ali A, Ramlogan O, Talukdar D. Comparative Quality Control Study of Different Brands of Diclofenac Sodium Tablet Available in Local and Government Pharmacies by In-Vitro Testing. Cureus. 2020;12(11):e11348. doi:10.7759/cureus.11348
27. Solanki SS, Dahima R. Formulation and evaluation of aceclofenac mouth-dissolving tablet. J Adv Pharm Technol Res. 2011;2(2):128-31. doi:10.4103/2231-4040.82951
28. Ahmed SM, Ali AA, Ali AM, Hassan OA. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride. Drug Des Devel Ther. 2016;10:4061-71. doi:10.2147/dddt.s115909
29. Sipos E, Kósa N, Kazsoki A, Szabó ZI, Zelkó R. Formulation and Characterization of Aceclofenac-Loaded Nanofiber Based Orally Dissolving Webs. Pharmaceutics. 2019;11(8):417. doi:10.3390/pharmaceutics11080417
30. Ding H, Li B, Boiarkina I, Wilson DI, Yu W, Young BR. Effects of Morphology on the Bulk Density of Instant Whole Milk Powder. Foods. 2020;9(8):1024. doi:10.3390/foods9081024
31. Shah RB, Tawakkul MA, Khan MA. Comparative Evaluation of Flow for Pharmaceutical Powders and Granules. AAPS PharmSciTech. 2008;9(1):250-8. doi:10.1208/s12249-008-9046-8
32. Fu JJ, Chen C, Ferellec JF, Yang J. Effect of Particle Shape on Repose Angle Based on Hopper Flow Test and Discrete Element Method. Adv Civ Eng. 2020;2020:8811063. doi:10.1155/2020/8811063
33. Al-Hashemi HMB, Al-Amoudi OSB. A review on the angle of repose of granular materials. Powder Technol. 2018;330:397-417. doi:10.1016/j.powtec.2018.02.003
34. Jallo LJ, Ghooi C, Gurumurthy L, Patel U, Davé RN. Improvement of flow and bulk density of pharmaceutical powders using surface modification. Int J Pharm. 2012;423(2):213-25. doi:10.1016/j.ijpharm.2011.12.012
35. Moin A, Gangadharappa HV, Adnan M, Rizvi SM, Ashraf SA, Patel M, et al. Modulation of Drug Release from Natural Polymer Matrices by Response Surface Methodology: in vitro and in vivo Evaluation. Drug Des Devel Ther. 2020;14:5325-36. doi:10.2147/DDDT.S279955
36. Dwivedi R, Singh AK, Dhillon A. pH-responsive drug release from dependal-M loaded polyacrylamide hydrogels. J Sci Adv Mater Dev. 2017;2(1):45-50. doi:10.1016/j.jsamd.2017.02.003
37. Koirala S, Nepal P, Ghimire G, Basnet R, Rawat I, Dahal A, et al. Formulation and evaluation of mucoadhesive buccal tablets of aceclofenac. Heliyon. 2021;7(3):e06439. doi:10.1016/j.heliyon.2021.e06439
38. Dahiya S, Kaushik A, Pathak K. Improved Pharmacokinetics of Aceclofenac Immediate Release Tablets Incorporating its Inclusion Complex with Hydroxypropyl-β-Cyclodextrin. Sci Pharm. 2015;83(3):501-10. doi:10.3797/scipharm.1509-07
How to Cite
Singh, P., Shrivastava, A. K., Kumar, S., & Dwivedi, M. D. (2021). Formulation and Evaluation of Sustained Release Matrix Tablets of Aceclofenac. Borneo Journal of Pharmacy, 4(2), 99-109.