Membangun Kepercayaan Diri Mahasiswa di Era AI: Analisis Pengaruh Persepsi Manfaat, Sikap terhadap Teknologi, dan Pengalaman Penggunaan Kecerdasan Buatan Building Students’ Self-Confidence in the Era of Artificial Intelligence: An Analysis of the Effects of Perceived Usefulness, Attitude Toward Technology, and Artificial Intelligence Usage Experience
Main Article Content
Abstract
The advancement of artificial intelligence (AI) technology has significantly transformed education, particularly in how students adapt to and interact with modern learning technologies. This study aims to examine the influence of perceived usefulness of AI, attitude toward technology, and AI usage experience on students' self-confidence at the Faculty of Business and Informatics. A quantitative approach was employed using a survey method involving 306 respondents from a total population of 842 students, selected through proportionate stratified random sampling. Data were analyzed using the Partial Least Squares Structural Equation Modeling (PLS-SEM) technique with SmartPLS version 4. The results indicate that all constructs in the model meet the validity and reliability criteria, and the model is deemed fit with an SRMR value of 0.063. Structurally, the three independent variables—perceived usefulness of AI, attitude toward technology, and AI usage experience—have a positive and significant effect on students' self-confidence, with an R-square of 0.633, explaining 63.3% of the variance in students' self-confidence. These findings highlight the importance of integrating cognitive, affective, and behavioral factors to build students' confidence in the digital era and offer strategic implications for higher education institutions seeking to enhance AI-based learning practices.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. This publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording.
References
Aithal, A., & Aithal, P. S. (2020). Development and Validation of Survey Questionnaire & Experimental Data – A Systematical Review-based Statistical Approach. Munich Personal RePEc Archive, 104830, 4. https://mpra.ub.uni-muenchen.de/104830/ MPRA
Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(43), 1–18. https://doi.org/10.1186/s41239-023-00411-8
Cohen, J. (2012). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/10.4135/9781412961288.n443
Fornell, C., & Larcker, D. F. (2012). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. http://www.jstor.org/stable/3151312
Garson, G. D. (2016). Partial Least Squares: Regression and Structural Equation Models. Statistical Publishing Associates. https://doi.org/1626380392
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2020). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). In T. Edition (Ed.), JSage Publications, Inc. Sage P. https://www.researchgate.net/publication/353452600_Partial_Least_Squares_Structural_Equation_Modeling
Hamid, R. S., & Anwar, S. M. (2019). STRUCTURAL EQUATION MODELING (SEM) BERBASIS VARIAN: Konsep Dasar dan Aplikasi dengan Program SmartPLS 3.2.8 dalam Riset Bisnis (Abiratno (ed.); Cetakan 1). PT Inkubator Penulis Indonesia.
Haryono, S. (2016). Metode SEM untuk Penelitian Manajemen dengan AMOS LISREL PLS (Cetakan 1). PT Intermedia Personalia Utama. https://doi.org/10.1088/1751-8113/44/8/085201
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227–261. https://doi.org/10.1111/isj.12131
Kusumah, E. P. (2023). Metode Penelitian Bisnis: Analisis Data Melalui SPSS dan Smart-PLS (Cetakan 1). Penerbit Deepublish.
Makwana, D., Engineer, P., Dabhi, A., & Chudasama, H. (2023). Sampling Methods in Research: A Review. International Journal of Trend in Scientific Research and Development (IJTSRD), 7(3), 762–768. https://www.researchgate.net/publication/371985656
Savitri, C., Faddila, S. P., Irmawartini, Iswari, H. R., Anam, C., Syah, S., Mulyani, S. R., Sihombing, P. R., Kismawadi, E. R., Pujianto, A., Mulyati, A., Astuti, Y., Adinugroho, W. C., Imanuddin, R., Kristia, Nuraini, A., & Siregar, M. T. (2021). Statistik Multivariat dalam Riset (I. Ahmaddien (ed.); Cetakan 1). Penerbit Widina Bhakti Persada. http://www.unil.ch/ssp/page34569.html
Wadood, F., Akbar, F., & Ullah, I. (2021). The Importance And Essential Steps Of Pilot Testing In Management Studies: A Quantitative Survey Results. Journal of Contemporary Issues in Business and Government, 27(5), 2021. https://cibg.org.au/