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INTRODUCTION 

Since the last century, pharmaceutical and biotechnology industries have developed methods and strategies for the 

therapeutic use of proteins. Nonetheless, patients' diverse needs have led to the search for new alternatives. One of them is 

ribonucleic acid (RNA). Nowadays, various therapies are employed to modulate their function in cells, such as antisense 

oligonucleotides (ASOs)1. 

Grineva formulated the practical application of the ASOs principles in 1967. He proposed that the union of active chemical 

groups in oligonucleotides caused them to be directed to a particular complementary nucleic acid fragment. The chemical 

reaction occurred in a specific region of the target nucleic acid near the duplex structure formed. This approach was called 

the complementary-addressed modification2. Later, Paul Zamecnik introduced that synthetic oligonucleotides could have 

significant therapeutic potential to block protein translation. The first studies were done to treat Rous sarcoma, a tumor 

produced by a retrovirus in chickens. Considering its origin, he demonstrated that a synthetic oligodeoxynucleotide created 

to bind to the virus RNA blocked its translation and, therefore, its replication3. 

Antisense oligonucleotides development has guided the treatments' individualization and personalization, with multiple 

benefits in diseases' clinical approaches. Furthermore, they possess advantages that other pharmaceutical products have not 

provided in chronic sicknesses, with significant reductions in early and late response4. Another benefit is the time it takes to 

produce and trade new drugs and the high cost of these procedures. Antisense therapy research can reduce production and 

validation time through high throughput screening (HTS). Additionally, it facilitates deciding to keep those molecules that 

demonstrate activity against a specific target in development5. 
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 Abstract 

Antisense oligonucleotides are drugs whose mechanism is based on 
binding to RNA target sequences. For this purpose, they modify the 
protein expression through steric hindrance and exon omission. Its 
production involves several steps: synthesis, purification, and 
lyophilization. Usually, the most complicated procedure is 
synthesis due to the chemical reactions necessary to add the 
required oligonucleotide bases. BP1001, inotersen, nusinersen, 
eteplirsen, and golodirsen are a few antisense drugs developed for 
treating neurodegenerative and neuromuscular diseases. Although 
antisense oligonucleotides present off-target reactions, multiple 
studies are being performed. The following review shows 
information regarding the pharmaceutical characteristics for 
industrial production and the current state of applicability in 
clinical practice. In conclusion, some molecules have already been 
approved for commercialization (inotersen, nusinersen, ataluren, 
eteplirsen, and golodirsen), showing them as promising therapeutic 
solutions in the short and medium term for disorders developed by 
specific genetic factors. 
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Besides, genetic factors such as oncological, neuromuscular, neurodegenerative, cardiovascular, immune, and respiratory 

pathologies influence most illnesses that affect humans6,7. For that reason, the research and elaboration of molecules whose 

mechanism is based on gene therapy are relevant to achieving a possible treatment against them8. Given this situation, the 

review aims to present a general scenario regarding antisense therapy, its pharmaceutical characteristics for industrial 

production, and its current applicability in clinical practice for different pathologies. 

 

OVERVIEW OF ASOs 

ASOs Participation in the Genetic Process 

Deoxyribonucleic acid (DNA) and RNA are macromolecules called nucleic acids. They are responsible for the storage and 

inheritance of genetic material. As a complement, they can recognize and bind to specific targets. The basis of both molecules 

is nucleotides, and these units consist of a phosphate group, a sugar, and a nitrogenous base. In the case of DNA, the sugar 

is deoxyribose, and its bases correspond to adenine (A), thymine (T), guanine (G), and cytosine (C). Likewise, the RNA 

nucleotide sugar is ribose, and they have the same nitrogenous bases, except for uracil (U) instead of T9. 

The Central Dogma of Molecular Biology states that DNA stores genetic information, proteins perform biological functions, 

and RNA is a transmission bridge between molecules. Approximately 2% of genes are eventually translated into proteins 

in the human genome, while 90% are transcribed into non-coding RNA (ncRNA)10. Transcription is a process where 

messenger RNAs (mRNAs) are synthesized11. This material comprises a single-strain synthesized by an RNA polymerase, 

which has the amino acid sequence that encodes for a protein. Obtaining a protein from mRNA nucleotides is called 

translation12. 

Before translation, the RNA must go through splicing, where its introns are removed13. This portion that does not encode 

for a protein must be eliminated before the messenger RNA leaves the cell nucleus14. In the case of prokaryotes, the process 

does not exist. For them, transcription and translation are coupled processes15. Translation leads to protein biosynthesis. 

Three nucleotides of the RNA sequence (codon) encode for an amino acid, and its complementary sequence (the anticodon) 

is in the transfer RNA (tRNA)16. The main target of ASOs is mRNAs, as shown in Figure 1. If they are inhibited, the proteins 

associated with them, often responsible for certain diseases, would not be formed17. 

 
Figure 1. Diagram of protein synthesis inhibition through the ASOs 

 

Principal Characteristics 

ASOs are chemically synthesized. They are 12 to 30 nucleotides long and are designed to bind to RNA according to pairing 

rules (A-T and G-C)1. Its length determined its specificity. Those with 16 to 20 nucleotides can bind exclusively to target 

RNA, allowing its function through cleavage, degradation, and steric blocking18. In contrast, by binding to partially 

complementary sites (sites with a sequence similar to the RNA of interest), adverse effects like hepatotoxicity are generated 

by mechanisms equal to those utilized over its target19-22. They are destroyed by RNase-H, an endogenous nuclease that 

recognizes the duplex formed between the antisense drug and the target RNA. Thus, non-complementary junctions with 

non-target RNAs play a major role in addition to length23-25. 
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Antisense drugs comprise several classes of oligonucleotides. They have complementarity with target RNA molecules, 

including viral RNA and mRNA, and the binding to the specific sequence inhibits its function. Four major classes have been 

described: oligodeoxyribonucleotide (ODN), small interfering RNAs (siRNAs), RNAzymes, and DNAzymes4. Their 

characteristics are shown in Table I. 

Table I. Principal characteristics of the antisense molecules that are currently identified4 

 
 
Characteristics 

Antisense molecule 

ODN siRNA RNAzyme DNAzyme 

Linear single-strand DNA 
structure, 12 to 25 base pairs 
long. It acts through the 
enzymatic activity of 
ribonucleases such as RNases 
H, L, or P. 

Linear double-strand 
RNA structure, 21 to 25 
base pairs long. It works 
through an RNA-
induced silencing 
complex (RISC). 

Complex RNA structure, 
with single- and double-
band sections, comprises 
more than 30 base pairs. It 
functioned through its 
inherent enzymatic activity. 

Single-strand DNA 
structure, 30 to 35 base 
pairs long. It acts 
through its inherent 
enzymatic activity. 

 

Mechanism of Action 

One of its features is reducing protein expression levels associated with the central mechanisms of particular illness 

development. They modify the expression of a target mRNA by altering splicing or recruiting RNase H. Therefore, it is a 

catalytic effect, and a single ASO can participate in the destruction of many RNA molecules4,26,27. Other mechanisms include 

inhibition of translation by steric hindrance, exon skipping, destabilization of pre-mRNA in the nucleus, and targeting the 

destruction of miRNA that control others' expression (Table II). The steric hindrance and modulating splicing strategies do 

not use RNase H27. 

A drawback is that natural or unmodified nucleic acids are susceptible to nuclease degradation since they digest or cleave 

the phosphodiester bonds of DNA, RNA, and/or their hybrid28. Also, they need better binding to plasma proteins by 

performing strong interactions with them. Therefore, they exhibit faster blood clearance, mainly due to blood metabolism 

or urine excretion29. Multiple modifications to nucleotides and their linkages can improve some properties, augmenting 

their suitability as a drug. However, they cause changes in their pharmacokinetics and pharmacodynamics. In some cases, 

such a situation leads to the impossibility of employing the RNase H cleavage mechanism (desired for many ASOs). Plus, 

in their development as therapeutic agents, the mechanism of action depends on the target sequence and the chemistry 

utilized in its design26. 

Table II. Mechanisms of action of antisense drugs30-36 

Strategy Mechanism 
Steric hindrance Inhibition of translation by blocking the binding of protein complexes such as ribosomal units. 
Exon skipping Interruption of signal sequences to affect splicing. 
Pre-mRNA desestabilization Strand invasion by its union, altering the splicing. 
Targeted destruction of miRNA Destruction by site-selective ribonucleases bound to antisense drugs. Ribonucleases destroy RNA 

by cutting phosphodiester bonds. 

 

Structural Modifications 

The chemical modification of the first-generation ASOs sought to reduce nuclease degradation. This strategy involved the 

replacement of one non-bridging oxygen atom in the phosphate group with sulfur groups (phosphorothioates), methyl 

groups (methyl phosphates), or amines (phosphoramidates). The phosphorothioate substitution is the oldest and most 

widely employed, as it supports RNase H activity against ASO binding to target RNA, renders internucleotide linkages 

resistant to nuclease degradation, and enhances cell penetration properties2,27,29. Subsequently, new chemical modifications 

were developed to overcome diverse non-sequence-specific issues with improved nuclease resistance and binding affinity. 

The 2'-ribose changes include 2'-O-methyl (2'-OMe), 2'-fluoro (2'-F), 2'-O-methoxyethyl (2'-MOE), 2',4'-constrained 2'-O-ethyl 

(cEt), locked nucleic acid (LNA), morpholino oligomers (MO), and peptide nucleic acids (PNAs). These modifications 

developed second and third-generation ASOs2,27. 

 

Distribution 

Besides the above modifications, delivery systems were developed to penetrate cell membranes. Most have a negative 

charge because of some adjustments, such as an oxygen substitution in the phosphodiester group by sulfur, carbon, or 
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nitrogen8,37. Moreover, oligonucleotides can trigger the innate immune response in B cells through mechanisms like the 

activation of toll-like receptors38,39. Both characteristics affect their incorporation into cells. Some systems established for a 

correct distribution correspond to liposomes, cationic polymers, and conjugated ligands40. 

Liposomes are vesicles composed of phospholipids41. When combined with oligonucleotides, they form complexes that 

allow better drug distribution. This structure facilitates binding to the cell membrane and is introduced by endocytosis42. 

Cationic polymers increase the oligonucleotides' introduction into the cell through electrostatic interactions with the cell 

membrane. The result is endocytosis stimulation43. Finally, the conjugated ligand methodology binds an antisense drug 

receptor ligand. As a complement, the therapy can reach the specific cell receptor44,45. 

 

Pharmacokinetics 

The principal administration route for systemic applications is a parenteral injection (intravenous infusion and 

subcutaneous injection)46. Their pharmacokinetics have been investigated mainly in compounds modified with sulfur 

because, without these modifications, they are easily eliminated by various factors. They have a distribution phase of a few 

hours regarding phosphorothioates, followed by an elimination phase of several weeks. It is characterized by high 

concentrations in organs such as the liver and kidney. Its half-life is two to three days. Despite this, molecules with additional 

sugar modifications will have a longer half-life, going from days to weeks1. 

Furthermore, these drugs are more than 85% bound to plasma proteins. Their decrease means greater renal clearance during 

the distribution phase29. It should be noted that the oligonucleotides have multicompartment pharmacokinetics. The high 

concentration determines the transfer from the membrane to the cell interior in the liver and kidneys, the low metabolism 

rate, and its slow release and distribution from the tissues to the circulation47. 

 

Production 

ASOs manufacturing process consists of five main steps: synthesis, cleavage and deprotection, purification, desalting and 

concentration, and lyophilization. Additional stages can be done depending on the type to be manufactured. Each phase 

requires equipment for that process part and associated controls to ensure reliability and batch quality. The most 

complicated step is synthesis, demanding sophisticated apparatus and specialized software48. Solid-phase synthesis has 

been used for its manufacture through phosphoramidite monomers. They are nitrogenous bases with protecting groups 

that prevent the amine, hydroxyl, and phosphate groups on the nucleotides from undergoing unwanted side reactions49. 

The bases are added sequentially on a controlled pore solid support during synthesis to generate the desired 

oligonucleotide50. Each base addition cycle consists of four chemical reactions51, described in Table III. 

Oligonucleotide deprotection involves removing a cyanoethyl (CNET) protecting group from the phosphate backbone, 

oligonucleotide chain cleavage from the support, and base deprotection. This process is generally performed in batch mode. 

The entire solid support is incubated with cleavage and deprotection reagents. After deprotection, the spent solid support 

is filtered, and the crude oligonucleotide solution is recovered52. Then the crude solutions are purified. Chromatographic 

methods achieve this part, and the selected type and its associated settings depend on the expected function. Although 

oligonucleotide primers require little or no purification, therapeutic products require chromatographic purification to ensure 

a high-quality active ingredient53. 

The most widely accepted option for manufacturing scale isolation is Tangential Flow Filtration (TFF). The technique 

employs an appropriately sized filter membrane and a pump to circulate the sample through the TFF setting, making the 

process more efficient. As the solution becomes concentrated, incorporating buffer or purified water desalinates the solution, 

removing ions and even oligonucleotide short chains formed as impurities (in case the HPLC did not produce fractions 

completely pure)54. Finally, lyophilization is made through a freezer dryer (machine with a sample chamber, a condenser, 

and a vacuum pump). The three main steps in this stage are freezing, primary drying, and secondary drying. The final 

product is obtained in powder form by vacuum sublimation, providing long-term storage and more comfortable 

handling55. Controlled pore glass (CPG) has been contemplated in solid-phase synthesis. It is composed mainly of silanol 

groups and is characterized by a narrow pore size distribution for efficient purification and a large internal surface area for 

oligonucleotide chains' high binding capacity. It is chemically stable to the solvents utilized during its synthesis56. 
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In contrast, liquid-phase oligonucleotide synthesis (LPOS) is an alternative for large-scale manufacturing. An advantage 

regarding the solid phase is the absence of the process's heterogeneous nature, allowing greater accessibility of the reagents 

for the reaction. Also, it presents benefits in production costs, reducing the number of reagents and allowing their 

development in a conventional batch reactor without installing an automatic synthesizer necessary for solid-phase 

synthesis57. 

Table III. Reactions of the synthesis cycle of phosphoramidite monomers on the solid support58 

Reaction type Description 
Deprotection The 5ʹ-hydroxyl group of the first nucleoside attached to the resin is deprotected by trichloroacetic acid treatment. 
Coupling The nucleoside attached to the support is coupled with the following phosphoramidite, which is activated with 

tetrazole. 
Blockade 
 

The 5ʹ hydroxyl groups of the oligonucleotide chains that did not react during the coupling reaction are blocked by 
acylation with acetic anhydride. 

Oxidation Oxidation of the phosphite-triester formed during the coupling reaction occurs using iodine and water. 

 

Quality Control 

Oligonucleotides and their metabolites' determination in complex matrices at a low concentration pose a challenge. Proper 

quality control is crucial. This concept implies obtaining reliable results through measurement traceability, uncertainties 

estimation, reference materials, interlaboratory comparisons, and analytical procedures validation. For ASOs, the 

procedures have yet to be published. Nevertheless, parameters such as accuracy, precision, the limit of detection (LOD), the 

limit of quantification (LOQ), and linearity are defined to obtain reliable analytical methods59. Table IV lists the definitions 

of these validation parameters. By its nature, there is no specific regulatory guidance for ASOs. There needs to be more 

quality expectations and standards throughout the phases of development. Considering the guidelines of the International 

Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) is recommended. Quality 

control strategies should be based on the ICH Q8, Q9, and Q10 standards, oriented to pharmaceutical development, quality 

risk management, and pharmaceutical quality system, respectively60. 

Quality control systems for articles obtained through biotechnological processes are similar to those routinely used in 

conventional pharmaceutical products. The difference lies in the methods for finding the identity, uniformity, and impurity 

profile, and the methodology complexity is related to its size, characteristics, and manufacture. The United States 

Pharmacopeia (USP) establishes that the sterility assay, the safety product in experimental animals, and the potency must 

be performed within the tests. Likewise, the chapters corresponding to injections, pH, injection particles, bacterial endotoxins 

testing, and impurities should be consulted. Analysis of biotechnology products relies on sophisticated methods to 

demonstrate structural identity and homogeneity and assess shelf life and stability61. 

Mass spectrometry is one of the most popular tools for oligonucleotide analysis, and it enables identification and 

quantification with high precision. Molecular mass measurements can be employed to characterize their purity and 

appreciate low-molecular-weight impurities, metabolites, or post-synthesis modifications7. When coupled with liquid 

chromatography, it achieves a selective separation of the components and a precise quantitative and qualitative 

determination of complex oligonucleotide mixtures. Together, they have become the primary tool for its analysis62. 

Moreover, due to the growing diversity of products and their applications, it is necessary to seek input from the global 

regulatory agency throughout the development on a case-by-case basis. In 2018, the ICH considered developing a new 

quality guideline focused on oligonucleotides to provide harmonized quality management recommendations. The 

document would be applicable internationally and facilitate access to new therapeutic candidates in a rapidly growing field. 

The same advance is expected in the future60. 

Table IV. Definitions of the parameters required for an analytical validation63,64 

Parameter Definition 

Accuracy Closeness between an accepted value (either from a standard or reference material) and the one found in the experiment 
when applying an analytical method. 

Precision Agreement degree between a series of individual measurements obtained from multiple samples of the same analyte. 
LOD Lowest analyte amount that can be detected in a sample, although it cannot be quantified with an exact value. 
LOQ Lowest analyte amount that can be quantitatively determined in a sample, with acceptable precision and accuracy, under 

established experimental conditions. 
Linearity Verification of a linear relationship between the analyte amount or concentration and the analytical signal determined in 

the method. 
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Advantages and Disadvantages 

Therapies with ASOs have advantages and disadvantages to be defined. Some of them, as shown in Table V. Some 

solutions for the limitations exposed are the phosphate bond modifications between the nucleotides and modifications to 

the sugar rings, altering the resistance to the nucleases degradation, the binding to plasma proteins to maintain stable 

concentrations, and the activation of the immune system. 

Table V. Advantages and disadvantages associated with the ASOs 

Advantages Disadvantages 

1. The target specificity depends on the nucleotide sequence, and the 
pharmacokinetic characteristics are more associated with the 
chemical structure. Therefore, variations or improvements in these 
aspects can be made separately65. 

2. The mechanistic characteristics give the ability to direct them 
towards objectives inaccessible through conventional methods, 
counting on low toxicity because of the limited systemic exposure66. 

1. Nucleases degrade these molecules67. 
2. They cannot cross the cell membrane due to their high 

negative charge67. 
3. ASOs can trigger immune responses67. 
4. They have problems crossing the blood-brain barrier, 

requiring an invasive administration through 
intrathecal or intraventricular routes66. 

 

APPLICATIONS 

Numerous studies have shown that the dysfunction of determined proteins is the leading reason for distinct diseases. To 

date, there is a limited number of treatments for such conditions. More efficient strategies have emerged recently, such as 

modifying the pathology proteins using ASO therapies67. Some of them are listed below: 

Neurodegenerative Diseases 

Huntington diseases 

Huntington's disease is caused by the expanded repeat of the CAG trinucleotide in exon 1 that encodes for the huntingtin 

protein. It is found on chromosome 4. This mutation generates a polyglutamine (PolyQ) tract68-70. As a result, a triad of 

cognitive, motor, and psychiatric problems is triggered. Currently, there is no approved treatment to slow the condition's 

progress. In addition, its pathophysiology makes it an excellent candidate for developing therapies related to its genetic 

origin69. 

Studies developed in mouse models have shown the efficacy of non-allele-specific ASOs for disease treatment. Thus, 

progressing to clinical studies has been achieved. An example is IONIS-HTTRX. This oligonucleotide binds to the RNA of 

HTT, promoting its destruction and reducing the protein's excess amount68,69. Phase I and II studies have demonstrated its 

safety and tolerability, being administered intrathecally70. Unfortunately, a Phase III investigation does not benefit patients 

who received the molecule. 

 

Hereditary transthyretin amyloidosis (AHTTR) 

It is a pathology characterized by the amyloid extracellular deposit and the progressive destruction of the peripheral nervous 

system, affecting kidneys, liver, and gastrointestinal tract, leading to autonomy loss and eventual death. In most cases, it 

originated through a point mutation in the TTR gene by substituting valine for methionine at position 30 of the mature 

protein. It requires a multidisciplinary approach to reduce the number of deposits and control cardiac, renal, and ocular 

complications71. 

Inotersen is a second-generation ASO aimed at reducing the production of hepatic TTR72. This ASO is complementary to a 

region in the 3'-UTR of the human TTR mRNA, lowering its production. The deposits' formation is reduced by limiting their 

amount, stopping the disease progression71. Studies in Phases II and III have indicated that it benefits the patient, as in 

preclinical trials performed in mice and cynomolgus monkeys73. Still, platelet levels and renal function should be monitored 

when administered due to thrombocytopenia and glomerulonephritis74. The European Medicines Agency (EMA) and the 

Food and Drug Administration (FDA) have approved it for AhTTR in Stages 1 and 271. 

 

Amyotrophic lateral sclerosis (ALS) 

It is a progressive and fatal illness that affects motor neurons. Its fatality is mainly associated with the respiratory paralysis 

that it can produce over time. Approximately 90% of the cases are sporadic (mutation origin is unknown with certainty), 
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while the remaining percentage belongs to familial cases. Various genes are associated with an augmented pathology risk. 

Most cases have mutations in the C9ORF72 gene. Nonetheless, the first identified was SOD1, found mainly in hereditary 

cases. Other altered genes include FUS-P525L, PFN1, and SOD1-A4V. The FDA approves two drugs as a traditional 

treatment. One is riluzole, which suppresses excessive excitation of motor neurons, slows disease progression and increases 

survival. As a complement, edaravone seeks to suppress oxidative stress. However, no existing therapy is genuinely 

curative75,76. 

Antisense therapy targets the principal and most well-known mutations. The developed ASOs seek to bind to SOD1 and 

C9ORF72 mRNA. The SOD1 gene encodes the enzyme superoxide dismutase 1, and its mutations lead to a protein with 

toxic characteristics and prone to aggregation. Subsequently, the C9ORF72 gene encodes a protein present in numerous 

brain regions. Although its function remains unknown, the formation of an aberrant product by the hexanucleotide repeat 

expansion (GGGGCC) in the noncoding gene region has been associated with possible neuronal cell death and symptoms 

such as ataxia30,76. One preclinical in vivo study directed at SOD1 reversed the disease course due to its suppression gene in 

rats and mice. This data demonstrated its great potential, as it stopped the disease and withdrew some of its aspects77. 

In the first human study with SOD1 antisense therapy, increasing doses of tofersen (ISIS 333611, BIIB067, or NCT02623699) 

were considered. It is an ASO that binds to SOD1 mRNA and originates its degradation through the activation of RNAse 

H1. Plus, it prevents the mRNA reading and the formation of potentially toxic proteins. The substance was administered 

intrathecally since, as observed in animal models (rodents and nonhuman primates), this route allows a generalized 

distribution in the brain and spinal cord77,78. Their main objective was to assess their safety and tolerance. The results 

indicated that the treated patients had fewer adverse effects than those who received a placebo and the drug was generally 

tolerated. The small number of subjects and the low concentrations administered limited the results presented78. A couple 

of years after the publication of this study, the clinical investigation of tofersen started, and a Phase III study was completed 

in 202177. 

Regarding the C9ORF72 gene, some preclinical studies have indicated that protein synthesis reduction to 50% prevents the 

course of the disease. Despite this, its total absence has unwanted effects, such as splenomegaly and enlarged lymph nodes, 

although it does not seem to generate motor deficiencies. For these reasons, the therapy has to attack the RNA with aberrant 

expansion but preserve its levels for encoding the protein. Regarding human studies, a clinical study began in 2018 to assess 

the safety, tolerance, and pharmacokinetics of BIIB07879. 

 

Neuromuscular Diseases 

Spinal muscular atrophy 

Spinal muscular atrophy is an autosomal recessive disease caused by a loss of survival motor neuron (SMN) protein through 

deletions or other mutations in the SMN1 gene. The pathology is characterized by progressive symmetrical muscular 

atrophy and weakness80. People have a nearly identical gene called SMN2, which differs only by one nucleotide at the 

beginning of exon 7. It weakens the splice site's signal, excluding this exon from most SMN2 transcripts and producing an 

unstable protein. Even so, it can generate a low amount of SMN protein. ASO therapy focuses on correcting the splicing 

defect of the SMN2 gene to produce a more significant amount of functional protein. The treatment used is called 

nusinersen. It binds to the regulatory sequence of intron 7, suppressing the splicing of exon 7, favoring its inclusion, and 

increasing the amount of functional protein67. 

In preclinical studies, nusinersen was shown as a potent inducer of SMN2 exon 7 inclusion and SMN protein expression. 

Furthermore, the molecule improved function and survival in murine models with spinal muscular atrophy. Central 

nervous system distribution, pharmacokinetics, and pharmacodynamics were evaluated in mice and nonhuman primates. 

The intracerebroventricular bolus injection was the most efficient administration form in rodents and produced long-lasting 

pharmacological effects. Intrathecal bolus injection was distributed throughout the spinal cord and had pharmacologically 

active accumulation levels in primates. Thus, it was possible to extrapolate the sustained correction in the SMN2 splicing in 

mice to a low-frequency dosing regimen in patients81. 

In the Phase II clinical study, the safety, tolerability, pharmacokinetics, and efficacy of multiple intrathecal doses of 

nusinersen were evaluated in pediatric patients. The administration had no major safety problems. All patients had mild or 

moderate adverse effects, while the severe ones were not drug-associated. Only one of the 19 participants had transient mild 
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drug-associated neutropenia. In the remaining cases, no significant changes were observed in laboratory tests, vital signs, 

electrocardiogram parameters, and cerebrospinal fluid (CSF)82. Clinical efficacy was studied through two assessments: the 

Hammersmith Infant Neurological Exam-Part 2 (HINE-2) and the Children's Hospital of Philadelphia Infant Test of 

Neuromuscular Disorders (CHOP-INTEND). They showed improvements in motor function and increased amplitude of 

the ulnar nerve's compound muscle action potential and the peroneal nerve82. 

The pharmacokinetics studied in CSF and plasma showed that their elimination was consistent with their average turnover. 

Mean peak plasma concentrations were observed one hour after dosing and decreased within 24 hours82. During Phase III 

clinical studies, the therapy's effectiveness was demonstrated in patients with spinal muscular atrophy, and its early 

utilization was supported. Therefore, it was approved by the FDA on December 23, 2016, for treatment in adults and 

children83. 

 

Duchenne muscular dystrophy (DMD) 

It is an X-linked degenerative neuromuscular disorder related to mutations in the DMD gene that encodes for the protein 

dystrophin. It occurs mainly in males, and in most patients, the mutations present are exon deletions or duplications, 

whereas missense or displacement point mutations occur less frequently. Excluding one or more exons in the mRNA 

produced little dystrophin during transcription. The molecule allows the anchorage between the actin cytoskeleton and the 

connective tissue. By being diminished, the muscle fibers become more susceptible to damage by contraction. This 

progressive damage generates weakness and function loss, and even death from respiratory or heart failure80,84. 

Its treatment is based on physiotherapy and glucocorticoids. These drugs have shown a delay in gait loss and the functioning 

preservation of the respiratory system. The first one approved by the FDA was deflazacort. Aminoglycosides such as 

gentamicin have been studied as well. Nevertheless, its use increases the risk of bacterial resistance, so it is not advisable. In 

addition, nutritional monitoring should be given since loss of swallowing function and complications associated with 

weight gain or loss may occur85,86. 

Clinical studies have evaluated potential treatments, including anti-inflammatory and antioxidant molecules, vasodilators, 

compounds to reduce fibrosis, and drugs targeting myostatin. In the European Union, there is approval for employing an 

orphan drug called ataluren85,86. The classification as an orphan is attributed to its indication for rare diseases (presented in a 

small population)87. It is an RNA-targeted therapy where the reading of a premature stop codon is restored. It is helpful for 

approximately 11% of patients whose pathology is caused by a codon reading stop in the DMD gene85,86. 

Other ASOs are based on exon skipping. When the mRNA is read, the defective exon or exons are skipped, reducing the 

severity of the symptoms88. Most causative mutations occur in the hot spot region, comprising exons 45 to 55. 

Approximately 14% of patients present mutations in exon 51, becoming a key target in the treatment search. There are two 

molecules for this purpose: drisapersen and eteplirsen84,88. Drisapersen has a 2'-OMePS modification. Initial studies yielded 

promising results, observing increased dystrophin expression in muscle fibers and improvements in infants' gait. However, 

the FDA and the EMA refused approval due to adverse effects such as proteinuria80,84. 

Related to eteplirsen, it received FDA approval as an orphan drug. It is a phosphorodiamidate morpholino oligomer (PMO). 

Like drisapersen, it has shown an improvement in functional dystrophin expression and occasioned a delay in ambulation 

loss. This drug is neutral, so it shows better tolerance than charged molecules. Despite this, PMOs' disadvantage is the 

requirement of an increase in dosage frequency or amount to achieve their function84,86. Finally, one of the most recently 

developed alternatives for this pathology is golodirsen. Unlike the previous two, it looks for exon 53 skipping. This therapy 

could benefit approximately 8% of patients86. Their Phase I and II studies indicated positive results for its utilization, and 

Phase III studies are currently underway89. This therapy has already been approved as an orphan drug by the FDA. Still, 

there is controversy since there are reports of nephrotoxicity86. 

 

Ulcerative Colitis (UC) 

It represents a disease that affects the quality of life of many patients. Likewise, surgical treatment complications have 

become a growing problem, especially pouchitis (inflammation that develops after the anal ileal pouch-anal anastomosis). 

Ileal pouch-anal anastomosis after total proctocolectomy is considered the standard surgical procedure for patients with UC. 

The intercellular adhesion molecule 1 (ICAM-1) is responsible for leukocyte migration to inflammation areas and is an active 
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component in inflammatory bowel disease's pathophysiology. This molecule is an inducible transmembrane glycoprotein 

expressed on the vascular endothelium, the colon membranes, and some leukocytes' cell surfaces. Its expression is 

upregulated in response to proinflammatory mediators, and it binds to ligands on the leukocyte's surface, such as β2 

integrins, Mac-1, and leukocyte function-associated antigen 1. Some studies showed augmented ICAM-1 expression and 

higher circulating blood concentrations within the inflamed gut90. 

Alicaforsen is one of the most promising agents for treating UC and refractory pouchitis. It is an ASO that negatively 

regulates the development and expression of the molecule on the cell surface. After ICAM-1 mRNA transcription, 

alicaforsen binds to it, and this process makes the genetic material ineffective and causes its destruction by cleavage. As a 

result, translation and further expression of the protein are inhibited. Finally, leukocyte migration and trafficking are 

diminished, substantially reducing the inflammatory cascade associated with the disease91. 

In a clinical study, a six-week course of alicaforsen was administered to 12 patients. The drug was safe and effective in 

improving the UC and pouchitis clinical picture, which was prolonged in most participants. In this investigation, 11 patients 

received the entire course of 240 mg of alicaforsen once daily, while, in one case, it was discontinued early due to a lack of 

efficacy. After three months, they showed a significant reduction in the disease manifestations. Nonetheless, a relapse 

occurred in seven patients. The mean duration of clinical improvement was 18 weeks, and it was longer than nine months 

in three patients with a sustained response91. 

 

Cancer 

Advances in antisense technology have resulted in higher potency and better tolerability, translating into a more significant 

clinical benefit92. ASOs target distinctive cancer pathologies at the RNA level through sequence-specific binding to modulate 

proto-oncogenes expression93. These genes participate in the regulation of growth and the cell cycle. When they undergo 

some mutation, they become oncogenes, favoring cancer formation94. Explicit efficiency modulates gene expression by 

targeting a causative gene, limiting the required doses. Unlike traditional therapies such as chemotherapy, this reduces side 

effects and treatment costs. Because cancer is a multifactorial disease, it is difficult to establish the target sequence or 

sequences to develop adequate therapy. Certain angiogenic factors (Table VI) have recently been identified as potential 

targets for ASOs-mediated intervention93. 

Preclinical studies have been designed using ASO for small-cell lung cancer. One of the pathways for developing this tumor 

is the abnormal functioning of the Ser/Arg repetitive matrix 4 (SRRM4), which is a splicing activator. Damage to SRRM4 

also affects the RE1-Silencing Transcription Factor (REST) activity, which acts as a tumor suppressor by regulating cell 

division. When detecting any abnormality in this cycle, it usually suppresses cell division with carcinogenic potential. That 

is why SRRM4 has been employed as a therapeutic target. In in vivo studies with mice, tumor shrinkage has been evidenced 

by suppressing the synthesis of the said matrix95. 

One drug utilized is custirsen. It corresponds to a chimeric 2'-O-methoxyethyl modified ASO targeting clusterin, an 

antiapoptotic protein92. The drug increases efficacy against cancer by inhibiting clusterin production by binding to the 

protein's mRNA. Promising results were sought in several Phase II studies and are currently being evaluated in Phase III 

clinical trials to treat prostate and lung cancers96. AZD9150 is another next-generation ASO antisense. It contains 2'-4' cEt 

modified residues, giving a high affinity97. The molecule consists of 16 nucleotides designed to attack and indirectly decrease 

the expression of the human signal transducer and activator of transcription 3 (STAT3). Its constitutive activation increases 

the levels of tumor-associated signaling molecules92. This ASO has provided preclinical activity in cell line models and in 

lymphoma patient-derived tumor xenograft (PDX) 97 models in which cells from cancer patients are implanted into a distinct 

host such as mice98. 

A Phase Ib clinical study was developed in patients with relapsed or refractory lymphoma. This safe drug appeared to 

benefit some patients with diffuse large B-cell lymphoma99. Besides, apatorsen (OGX-427) is a second-generation 

phosphorothioate ASO, which inhibits the heat shock protein 27 (Hsp27) expression. It is an ATP-independent 

cytoprotective chaperone expressed in prostate cancer. In many other human cancers, it is induced by cellular stress, and its 

detection correlates with poor clinical outcomes100. 

In a Phase I study in patients with previously treated castration-resistant prostate (CRPC), breast, non-small-cell lung, or 

ovarian cancer, doses up to 1000 mg were used. These were well tolerated when given alone or with docetaxel 
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chemotherapy27. Additionally, an open-label, randomized Phase II trial was conducted to evaluate the antitumor activity of 

apatorsen plus prednisone versus prednisone alone in men with metastatic CRPC. The drug combination did not change 

the proportion of patients with CRPC without disease progression but was associated with significant decreases in prostate-

specific antigens (PSA)100. They are produced by secretory epithelial cells and are androgen-regulated serine proteases 

expressed in benign and malignant prostatic tissue101. 

Another study drug is BP1001. It is an antisense ODN directed to the translation initiation site of the growth factor receptor-

bound protein 2 (Grb2). This protein is crucial for transducing oncogenic tyrosine kinase signals. Its inhibition suppresses 

fibroblast transformation, hematopoietic cell proliferation, and leukemia-like disease in mice. Preclinical studies showed that 

it effectively decreased the proliferation of leukemic cell lines positive for the BCR-ABL gene. Therefore, Phase I/Ib studies 

were performed in patients with refractory or relapsed leukemia. It was well tolerated, and early evidence of antileukemic 

activity combined with low-dose cytarabine was obtained102. 

Despite the many preclinical data generated, the efficient approach to the challenges presented for targeting cancer treatment 

still needs to be better understood. One arises from some oligonucleotides' nonspecific mechanism since, when modified, 

they suffer an affinity decrease for the target sequence, with its consequent accumulation in diverse tissues103. Another 

problem is drug distribution. Tumor tissues present specific microvascular characteristics, lymphatic drainage deficiency, 

and variable effects of interstitial pressure. Different areas can occur in the same tumor (necrotic nucleus, seminecrotic region, 

and active angiogenic front)104. These aspects hinder the drug's accessibility. By not accumulating to a significant degree in 

tumor tissue, the functional efficiency is affected, leading to some cells' evasion of the anticancer action103. 

Table VI. Angiogenic factors identified as potential targets for the development of ASOs against cancer 

Angiogenic factor Function in cancer development 
Epidermal growth factor (EGF)105 Expression levels of EGF and its receptor (EGFR) are correlated with 

progressive tumor growth and metastasis. 
Platelet-derived growth factor (PDGF)93,106 It promotes the blood vessels' vascularization and induces vascular wall 

maturation. 
Basic fibroblast growth factor (bFGF)93,106 It favors cell survival and mitogenic activities. 
Transforming growth factor α (TGF-α)93 It facilitates the epithelial-to-mesenchymal transition process, which is crucial 

for metastasis and poor prognosis. 
Transforming growth factor ꞵ (TGF-ꞵ)93 Failure in its functionality triggers tumor growth and invasiveness. 
Vascular endothelial growth factor A (VEGF-A)107 It promotes the growth of a network of blood vessels surrounding the tumor. 
Endoglin93 It acts as a membrane co-receptor for TGF-ꞵ, favoring tumor growth 

proliferation and metastasis. 
Angiopoietins 1, 2, 3, and 493 They stabilize blood vessels and cause vascular remodeling. 

 

CONCLUSION 

Since their discovery, ASOs have taken on great importance in developing antisense drugs for the possible treatment of 

neurodegenerative, neuromuscular, intestinal, and oncological pathologies, among others. Its development difficulties 

comprised its charge, easy degradation, complex distribution to cells, and unspecific binding to RNAs distinct to the 

therapeutic target, promoting adverse effects such as hepatotoxicity. Solutions have been promoted for these problems, 

including structural modifications and distribution methodologies to increase their therapeutic potential and size 

diminishing to increase their specificity. Therefore, several ASOs are examined in clinical studies for various diseases. Some 

have already been approved for commercialization (inotersen, nusinersen, ataluren, eteplirsen, and golodirsen), showing 

them as promising therapeutic solutions in the short and medium term for disorders developed by specific genetic factors. 
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