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INTRODUCTION 

Campylobacter spp cause campylobacteriosis, a chronic enteric infection. Campylobacter spp. are among the leading causes of 

gastroenteritis globally1. Importantly, World Health Organization (WHO) has identified Campylobacter species as one of the 

high-priority antimicrobial resistance. The evolution of antimicrobial resistance poses an additional threat to modern 

medical procedures, rendering current intervention measures geared towards curtailing the menace ineffective and 

increasing the mortality rate, causing treatment failure and infections—the spread of resistance genes through the 

environment2. Although the environment has been described as the reservoir of antibiotic-resistant bacteria which can be 

transmitted to humans, the environmental load of antibiotic-resistant Campylobacter is scarcely investigated3. Ingestion of 

contaminated water, as well as food, is the principal risk factor of campylobacteriosis4. 

There are various methods of source tracking and microbial risk assessment, most of which rely on conventional 

microbiological techniques. Detection of fecal indicator organisms such as Escherichia coli has been used as a traditional 

surface water pollution monitoring and risk assessment method5. However, this method is hampered by several limitations: 

poor correlation between indicator organism and pathogen presence and the inability of the method to indicate the source 
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 Abstract 

Campylobacter species continue to remain critical pathogens of public 
health interest. They are responsible for approximately 500 million 
cases of gastroenteritis per year worldwide. Infection occurs 
through the consumption of contaminated food and water. 
Microbial risk assessment and source tracking are crucial 
epidemiological strategies to monitor the outbreak of 
campylobacteriosis effectively. Various methods have been 
proposed for microbial source tracking and risk assessment, most of 
which rely on conventional microbiological techniques such as 
detecting fecal indicator organisms and other novel microbial source 
tracking methods, including library-dependent microbial source 
tracking and library-independent source tracking approaches. 
However, both the traditional and novel methods have their 
setbacks. For example, while the conventional techniques are 
associated with a poor correlation between indicator organism and 
pathogen presence, on the other hand, it is impractical to interpret 
qPCR-generated markers to establish the exact human health risks 
even though it can give information regarding the potential source 
and relative human risk. Therefore, this article provides up-to-date 
information on campylobacteriosis, various approaches for source 
attribution, and risk assessment of bacterial pathogens, including 
next-generation sequencing approaches such as shotgun 
metagenomics, which effectively answer the questions of potential 
pathogens are there and in what quantities. 
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of fecal pollution since indicator organisms are excreted by some warm-blooded animals, although source tracking is an 

essential tool for public health risk characterization and the subsequent implementation of remediation and control 

strategies6-8. In the last few years, novel microbial source tracking methods have emerged to mitigate these challenges. These 

include library-dependent microbial source tracking and library-independent source tracking. However, library-dependent 

microbial source tracking methods have several setbacks, such as poor interspecies sensitivity, specificity, and overall 

accuracy9. Interestingly, library-independent techniques such as quantitative PCR (qPCR) have allowed the accurate study 

of fecal pollutants in environmental samples, including water, by quantifying the host-specific microbial source by tracking 

gene markers10. In the library, independent techniques, Bacteroidales, as bacteria with a strict requirement for the absence of 

oxygen inhabiting the human and animal gut with a higher population relative to E. coli, are typically used as the target11. 

Host-specific Bacteroidales 16S rRNA gene markers have been developed for diverse hosts to segregate human and non-

human fecal sources in the environment12. However, instead of targeting Bacteroidales 16S rRNA, a recent study reports that 

bird feces could be discriminated from other fecal sources by targeting bacterial taxonomic groups like species of Helicobacter 

with better results13. Again, these methods are not without limitations. For example, studies have reported that variations in 

geographical locations could seriously interfere with the performance and results of these microbial source tracking 

techniques14,15. Equally, it is impractical to interpret qPCR-generated molecular markers to establish the exact human health 

risks even though it can give information regarding the potential source and relative human risk16. Other techniques of 

microbial source tracing depend on the results of antibiotics resistance and carbon utilization assays17. In light of the 

limitations of these methods, it is, therefore, necessary to look inward to find alternative options that are robust in terms of 

sensitivity and specificity.   

Recent advances in next-generation sequencing (NGS) approaches (Figure 1), such as shotgun metagenomic sequencing, 

have resulted in its widespread application in every aspect of microbiology, microbial source tracking inclusive18. Shotgun 

metagenomics can effectively answer the questions of what potential pathogens are there in a sample by identifying 

virulence and resistance genes and in what quantities19. When analyzed using an appropriate source tracking algorism, 

shotgun metagenomics data becomes a powerful tool for microbial source tracking and risk assessment20. 

Shotgun metagenomics is widely applied in environmental and clinical studies21. Metagenomics sequencing has been used 

to systematically study antibiotic genes associated with the human microbiome22, study the links of the microbiome with 

inflammatory bowel diseases23, and, importantly, track outbreaks of human pathogens24. Therefore, we set out to provide 

information on various source attribution methods and risk assessment of bacterial pathogens, highlighting the potential of 

next-generation sequencing in combination with machine learning technology. 

 

 
Figure 1. The links between metagenomics and microbial risk assessment25 
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MEDICALLY IMPORTANT Campylobacter spp., RESISTANCE GENES, AND RESERVOIRS 

Campylobacter species, gram-negative, slender, spirally curled, and microaerophilic bacteria are essential etiologic agents of 

gastroenteritis in humans, responsible for approximately 500 million cases of gastroenteritis per year globally1. Veron and 

Chatelain26 were the first to carry out a broad taxonomic study on the Campylobacter genus and classified them into four 

different species: C. fetus, C. coli, C. jejuni, and C. sputorum nearly five decades ago. Ever since, at least 36 species and 14 

subspecies of Campylobacter have been described27. These include C. upsaliensis, C. ureolyticus, C. helveticus, C. rectus, C. showae, 

C. gracilis, C. hominis, C. curvus, C. concisus, C. insulaenigrae, C. hyointestinalis, and C. lanienae. Of all these, C. jejuni and C. coli 

are considered to be the leading cause of human campylobacteriosis27,28. Various extra-gastrointestinal conditions and 

autoimmune diseases, especially Guillain–Barre syndrome, have been mainly linked to C. jejuni27. However, pathogenicity 

in other species such as C. lari, C. fetus, C. ureolyticus, C. upsaliensis, C. hyointestinalis, and C. concisus has been documented29,30. 

Species of C. fetus have been isolated in septicemia patients and are frequently described as the etiologic agent of poor fertility 

and miscarriage in humans and animals27. It is therefore clear that the accurate tracking of these pathogens is crucial given 

their wide-ranging medical significance, especially as a number of them have been identified to harbor antibiotic resistance 

genes (Table I). 

Table I. Medically important Campylobacter spp., resistance genes, and reservoirs 

Campylobacter spp. Resistance genes Primary reservoir References 

C. jejuni CmeDEF, erm(B), aadE, sat4, aphA-3, tet(O), ant-like A, ant-like 
B, ant(6)-Ia, sat-1, sat-4, lnuC, ant(6)-Ib, aad9, aph(3)-IIIa, 
aph(2)-IIIa, hpt, apmA, blaOXA-61, gyrA and CmeABC 

Dogs and cats  27,31-35 

C. coli erm(B), CmeABC, aadE, sat4, aphA-3, tet(O), blaOXA-61, cat, 
cfr(C), gyrA,  ant-like A, ant-like B, ant(6)-Ia, sat-1, sat-4, lnuC, 
ant(6)-Ib, aad9, aph(3)-IIIa, aph(2)-IIIa, hpt, apmA and lnuCs 

Dogs, cats, pigs and 
poultry  

27,31,33-37 

C. upsaliensis tet(O) and gyrA Dogs and cats  38,39 

C. fetus subsp. fetus  gyrA, tet(44) and ant(6)-Ib Cattle and sheep 40,41 

C. rectus erm(B) Human oral cavity 
and dogs 

42-44 

C. hyointestinalis gyrA Cattle, pig and sheep 44,45 

 

Campylobacter jejuni and C. coli exhibit intrinsic resistance to bacitracin, novobiocin, penicillin, rifampicin, trimethoprim, 

sulfamethoxazole, vancomycin, and most of the cephalosporins, whereas resistance to aminoglycosides, quinolones, 

macrolides, ketolides, amphenicols, and tetracyclines is usually acquired46-48. Although macrolides, such as azithromycin, 

and fluoroquinolone, such as ciprofloxacin, are the primary and secondary drugs of choice for the treatment of 

campylobacteriosis, resistance to these important antibiotics among species of Campylobacter with the potential to bring 

about more severe consequences, including prolonging hospitalization and higher risk of invasive infection or even death, 

have been reported27. This is of enormous concern, particularly when the global public health experts are struggling to 

contain the menace of antimicrobial resistance. What is more concerning, though, is that various mechanisms of resistance 

and, in some cases, a combination of more than one mechanism have been identified in these pathogens49. Table II 

summarizes the various mechanisms of resistance identified in Campylobacter spp. 

 

MICROBIAL RISK ASSESSMENT 

Quantitative microbial risk assessment modeling has been used to evaluate the risk of disease from waterborne pathogens 

since the 1980s. It is a type of modeling used to outline the human risk of exposure to disease-causing microbes from the 

environment through a dose-response model50. These models consist of several probability steps that rely on literature or 

primary data. Before the 2010 Haiti cholera epidemic, only a few studies, such as an analysis of the 1993 cryptosporidium 

outbreak in Milwaukee, Wisconsin, and an analysis of epidemic and endemic conditions caused by waterborne pathogens, 

applied mathematical modeling to study the transmission of the etiologic agents51,52. However, the Haiti cholera epidemic 
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shattered the country in 2010 and triggered a significant interest in applying infectious disease transmission modeling 

methods for waterborne microbial risk assessment; ever since significant progress has been made53. 

 

Table II. Campylobacter spp. mechanisms of resistance to various classes of antibiotics 

Class of antibiotic Mechanism of antibiotic resistance References 

Aminoglycosides such as gentamicin, amikacin, tobramycin, 
neomycin, and streptomycin. 

a). Enzymatic modification and 
inactivation of antibiotics 

27,54 

Macrolides, lincosamides and ketolides. Examples include 
erythromycin, roxithromycin, azithromycin and clarithromycin. 

a). Target mutation in 23S rRNA or/and 
ribosomal proteins L4 and L22 
b). Modification of the ribosomal target 
by methylation through erm(B) 
c). Multidrug efflux pump (CmeABC) 
and altered membrane permeability 

55,56 

Quinolones such as levofloxacin (Levaquin), ciprofloxacin (Cipro), 
ciprofloxacin extended-release tablets, moxifloxacin (Avelox), 
ofloxacin, gemifloxacin (Factive) and delafloxacin (Baxdela) 

a). Modification of DNA gyrase target 
(Thr86Ile) 
b). Multidrug efflux pump (CmeABC) 

27,57 

Tetracyclines such as tetracycline, doxycycline, minocycline and 
tigecycline 

a). Protection of the ribosomal binding 
site by ribosomal protection proteins 
(RPPs) encoded by tet(O) 
b). Multidrug efflux pump (CmeABC) 

58,59 

β-Lactam antibiotics (penicillins and cephalosporins) such as 
carbenicillin, penicillin G, ticarcillin, ampicillin, nafcillin, 
cloxacillin, mezlocillin, oxacillin, and piperacillin. 

a). Enzymatic inactivation of the 
antimicrobials by β-lactamase (OXA-61) 
b). Multidrug efflux pump (CmeABC) 

27,60 

 

Dose-response models are response curves produced by plotting the probability of a response outcome such as infection, 

illness, or death versus the known dose of the etiologic agent via an identified transmission route. Dose-response model is 

the main component of quantitative microbial risk assessment61. It is so crucial that a complete quantitative microbial risk 

assessment model is almost impossible to develop without it. Dose-response modeling can be regarded as a 

multidisciplinary area requiring substantial knowledge and skills in microbiology, pathology, mathematics, statistics, and 

computing62. In order to understand the procedure employed in the development and delivery of inoculum, as well as 

assess the employability of the data to the dose-response model, microbiology skills are necessary63. 

On the other hand, knowledge of pathology is required to assess the relevance and setbacks of identified exposure routes. 

To understand how to develop approaches to improve a model and write the required code to run such algorithms, 

computing and mathematics skills are needed. Furthermore, statistics knowledge is necessary for determining the 

confidence associated with employing the dose-response model across multiple hosts, pathogen strains, pathogen isolates, 

and routes of exposure64. In the design of a dose-response model, dosing experiments are typically carried out on animal 

models. Here a fixed concentration of pathogens is introduced to animals, and the resulting response is observed. The 

outcomes obtained are then incorporated into exponential or β-Poisson models, which will produce numerical constants 

that would calculate the probability of response outcome possible. Pathogen’s concentration needed to trigger a response in 

½ of the tested population would be regarded as either lethal dose-50 (LD50) or infectious dose-50 (ID50)61. 

The dose-response models currently available in quantitative microbial risk assessment software packages are fixed, based 

on the pathogen(s) chosen or sole pathogen(s). The packages do not make it possible for researchers to choose a dose-

response model or learn more about dose-response modeling in general, hindering users’ ability to visualize and optimize 

the dose-response model65. For example, QMRASpot, a quantitative microbial risk assessment software developed by Kiwa 

Watercycle Research (KWR) which precisely models drinking water systems for the Dutch government, has its overall 

exposure pathway and dose-response models embedded, unchangeable, and cannot be independently visualized66. 

Similarly, The FDA-iRISK, an integrative comparative risk assessment system primarily designed for food-borne hazards, 

displays the dose-response model name and its functional forms. It also updates the dose-response model regularly using 

expert elicitation from dose-response experts, but the capability to choose, optimize or visualize the dose-response models 

is unavailable67. Noteworthy, dose-response models for many infectious bacteria, including antibiotic-resistant bacteria, are 

lacking, and whether dose-response between antibiotic-resistant and susceptible bacteria might vary remains unknown. 

Therefore, to bypass these limitations associated with dose-response models61. 



Borneo Journal of Pharmacy, Vol 5 Issue 2, May 2022, Pages 136 – 152  e-ISSN: 2621-4814 

140 

APPLICATION OF SHOTGUN METAGENOMICS AND MATHEMATICAL MODELS IN 

RISK ASSESSMENT 

Application of high-throughput sequencing techniques such as shotgun metagenomics can allow genomic analyses and 

identification of genes present in genomes of all microbial communities and the protein in a sample without the need for 

prior culture in the laboratory68. Shotgun metagenomic sequencing is a type of sequencing that reads out the nucleotide 

bases of all microbial DNA present in a sample without targeting a particular genomic locus69. Here, microbial DNA is 

typically extracted and pruned into small chunks sequenced severally rather than targeting a specific genomic locus. This 

will produce DNA reads that align to distinct genomic locations for the various genomes present in the sample. This 

approach allows resistance and virulence genes to be identified, cloned, and functionally expressed70. In comparison to 16S 

rRNA gene amplicon sequencing, which only profiles targeted organisms or particular genes, shotgun metagenomics 

sequencing has been proven to provide results with enhanced resolution, better sensitivity, and more broad characterization 

of microbial communities in samples. This has led to its widespread application across the globe in various fields of scientific 

research71. 

Since its introduction almost two decades ago, metagenomics approaches have been applied to various studies, including 

characterizing endosymbiotic bacteria from the environment, identification of bacterial species capable of carrying out total 

ammonia nitrification, detecting of presence of antibiotic-resistant genes in bacteria from the gut, investigating human 

pathogen outbreak and study of diversity and function of microorganisms living in different types of water samples72. 

Specifically, shotgun metagenomics has been employed to characterize taxonomic and functional shifts in hot water 

microbiomes and established that unassembled short metagenomic reads were efficient for broadly screening for the 

potential presence and quantities of pathogens of interest in water73. Likewise, in a recent study, Chen et al.74 carried 

outsource the identification of antibiotic resistance genes of an interconnected river-lake system using shotgun 

metagenomics and observed an abundance of assorted genes linked to sewage pollution from city effluents. Further, in a 

different study75, a shotgun metagenomic study brings sand from freshwater beaches as a source of disease-causing bacteria. 

Hence, the exploitation of this approach in microbial risk assessment no doubt offers significant potential in discovering 

resistance and virulence genes among members of Campylobacter in the water system.   

Targeted screening method using the 16S rRNA gene marker for bacteria and shotgun metagenomics approach, which 

allows for the broad-range simultaneous detection of all microorganisms using the complete genetic information in the 

sample, are the two classical approaches commonly employed to study the composition of metagenomics samples76. The 

16S rRNA gene, found in the genetic material of every bacterium, has alternating and conserved regions. The conserved 

areas of the 16S rRNA gene allow for amplifying the nine variable regions using specific short single-strands of nucleic acid 

called primers. The amplification products are then processed for sequencing in a library construction process77. Typically, 

shotgun metagenomics constitutes six steps from study design to data validation. There is sample collection; processing and 

sequencing; pre-processing of the sequencing reads; profiling of taxonomic, functional, and genomic features; and data 

analysis78. Every stage of this multi-sequential requires careful preparation and excursion, especially since every step has 

several pitfalls that can affect the final result. To ensure the lysis reagent has access to the nucleic acid, adequate 

homogenization, and cell lysis before nucleic acid extraction must be achieved79. 

Phylogenetic analyses of pathogenic microbes using next-generation sequencing approaches like shotgun metagenomics 

are potent tools for tracking the origin of disease, examining the evolutionary relationships, and deciphering the 

transmission pathways69. Shotgun metagenomics is so robust that it can be employed in taxonomic characterization and 

understanding the relationships between microorganisms, their activities, and functionalities in a given environment. This 

way, interest can be in the presence of antibiotic resistance and virulence genes and their transcripts80. Using an appropriate 

bioinformatics analysis tool or microbial risk assessment model, data generated from shotgun metagenomics can be 

analyzed to investigate an outbreak, source attribution, and risk assessment, depending on the study's objectives. Therefore, 

the potential this kind of powerful approach holds cannot be overlooked81. 
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APPLICATION OF WHOLE GENOME SEQUENCING AND METAGENOMICS IN 

OUTBREAK INVESTIGATION, SOURCE ATTRIBUTION AND RISK ASSESSMENT OF 

FOODBORNE PATHOGENS 

Whole genome sequencing (WGS) and metagenomics are powerful tools in contemporary food safety studies because they 

make possible robust and timely detection, identification, and characterization of a wide range of foodborne pathogens. 

During an outbreak, a credible, rapid and powerful identification technique is invaluable in curtailing the etiologic agent's 

further spread and avoiding false source attribution82. Either culture-based or targeted techniques commonly identify 

foodborne pathogens. Targeted identification techniques such as PCR or ELISA, although rapid since they can be carried 

out without the need for prior culture, are not potent and therefore allow unrepresentative strains to go undetected. In 

addition, because of their low molecular level resolution, these techniques are incapable of establishing the link between an 

outbreak and detected pathogenic microorganisms83. 

In recent years, the development of novel source-tracking models has been rapidly triggered by a surge in the application 

of WGS in food safety and public health. Various models and machine learning algorithms have now replaced conventional 

risk assessment models. Bioinformatics data sharing tools make it particularly crucial as it allows efficient use of WGS and 

metagenomics in risk assessment, source tracking, and outbreak investigations, specifically at local, regional, national, and 

international levels84. Whole genome sequencing is a powerful molecular technique with a high ability to discriminate 

among isolates. Thus, it can be employed to establish the relationship between an outbreak and a specific pathogen. 

Although its laborious nature has limited its application to research settings rather than routine food screening, quite several 

researchers have successfully employed WGS for source tracking in retro-perspective studies of enterohemorrhagic E. coli85, 

Salmonella Bareilly strain causing a foodborne outbreak86, and protracted invasive listeriosis Outbreak in Germany87. 

Further, the use of WGS in outbreak investigation in the food industry by the United States Food and Drug Administration 

and the Centre for Disease Control is increasing. For the outbreak investigation, data generated from WGS studies are 

deposited to the GenomeTrakr, an open-access database. Currently, the GenomeTrakr database consists of laboratories in 

the US and worldwide, resulting in a significant data increase88. GenomeTrakr and similar databases employed in outbreak 

investigations are making it increasingly possible to decipher the links between sequence data from disease outbreaks on 

the one hand and food and environmental sources on the other. Similarly, the capacity of WGS to discriminate isolates based 

on their sources makes it possible to detect diffuse outbreaks by linking rare cases, which would ordinarily be regarded as 

sporadic cases lacking a common source. This will go a long way in mitigating disease outbreaks from their source89. 

Phylogenetic data can be employed in source attribution since source attribution aims to measure the corresponding 

significance of particular food sources and animal reservoirs for human cases of foodborne diseases. The genetic information 

could indicate possible relationships with specific hosts or reservoirs and therefore provide hints on a particular foodborne 

path's geographical distribution and transmission path90. In identifying transmission routes by determining the 

epidemiological links between reservoirs or sources of infections and supplanting the epidemiological data, WGS is an 

efficient technique. This approach has proven efficient for several foodborne pathogens such as Salmonella, replacing 

traditional source tracking methods, which are often insufficient and inaccurately attribute the source of contamination91. 

Metagenomics, as a technique that does not rely on a prior culture of samples, has the potential to contribute significantly to 

outbreak investigation, and risk assessment in food microbiology, particularly as it relates to the detection and 

characterization of non-culturable, fastidious microbes, the source attribution of risk related to virulence and resistance 

genes, as well as assessment of microbial risk in complex communities82. 

The application of metagenomics sequencing makes it possible for the synchronous detection and identification of the 

etiologic agent, antimicrobial resistance, and virulence genes, providing potential as a reliable technique for examining food 

and water quality92. The application of metagenomics in food safety to detect pathogenic microorganisms in foods is one 

major area that has received attention in recent years. In addition to detection and identification, analysis such as source 

attribution and risk quantification might be desired. The pathogenicity of some food pathogens, such as the Bacillus cereus, 
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which have very similar genomes, can be determined using virulence determinants encoded on their extrachromosomal 

DNA. The combination of data such as the presence of pathogens and specific virulence markers is necessary for risk 

assessment associated with these bacteria in contaminated food82. In order to detect foodborne pathogens using 

metagenomics, the application of shotgun sequencing has been recommended since it allows the detection and 

characterization of microorganisms from various forms of samples93. 

Using the metagenomics approach, detection of disease-causing bacteria involves taxonomic profiling of shotgun 

sequencing data using bioinformatics tools which could produce false results, especially at the species level. This could bring 

about the detection of less pathogenic or opportunistic pathogens rather than human pathogens, leading to underestimation 

or overestimation of the potential risk. It is, therefore, necessary to verify results94. Moreover, species-level identification is 

inadequate in assessing the potential risk of foodborne pathogens. Thus, it is necessary to determine virulence and resistance 

genes95. One other problem of taxonomic classification using metagenomics in risk assessment is that it detects hundreds of 

species of organisms, including those not of health significance, in a sample. Therefore, to detect species pertinent to risk 

assessment, it is indispensable to target pathogens, thence effortlessly removing trivial data for risk assessment. Doing this 

will no doubt minimize one of the major challenges of metagenomic studies, the difficulties associated with data analysis96. 

For risk assessment in food samples using metagenomic analysis, Grützke et al.97 proposed a workflow in which the first 

identification of taxonomic units with kraken2 using the complete RefSeq database. Then from the list of species, human, 

animal, or plant pathogens are filtered, classified reads are extracted from the metagenomic dataset and verified with BLAST 

using the nucleotide database from the website of the National Center for Biotechnology Information (NCBI). Subspecies 

are resolved by determination of the closest available reference using Mash. Virulence factors are detected with SRST2 in 

combination with the Virulence Factor Database (VFDB). Metagenomics, especially when integrated into predictive models, 

has made a significant contribution to risk assessment investigations since it can answer questions related to risk assessment, 

such as what pathogens are found in food and how they interact as well as how environmental factors affect features of the 

foodborne pathogens such as virulence and resistance82. 

Despite its potential and numerous advantages, metagenomics sequencing has hurdles surrounding its applicability, 

efficiency, cost, and standardization. Shotgun sequencing, for example, is incapable of discriminating between viable and 

dead organisms. Interestingly, several wet-lab scientists and bioinformaticians are increasingly providing solutions to these 

challenges98. To assess the potential infection risk posed by Campylobacter, it is necessary to employ techniques that ascertain 

viability since the viability of pathogens is an essential parameter in food and water quality assessment99. Conventional 

culture-based techniques, which rely on the ability of viable microbes to take up nutrients and produce colonies in a culture 

medium, have been used for many years, but these methods are both arduous and time-consuming100. For example, 

Campylobacter spp. take a week or more to produce a positive detection result using the culture method. In addition, the 

sensitivity of culture methods is low since they are not always capable of detecting microbes in viable but nonculturable 

states, even though their detection is necessary to prevent disease outbreaks101.  

Various novel viability assays such as dye-based assays, phage-based assays, testing of cellular metabolism as well as the 

measurement of heat flow and ATP production have emerged in the last twenty years102. Viability PCR or vPCR has been 

widely employed, reviewed, and optimized as an efficient method for discriminating viable from inactivated cells. The 

underlying principle of vPCR is that it correlates viability with cell envelope permeability. Here, microorganisms in a sample 

are incubated with a dye such as a propidium monoazide (PMA). Following photo-activation, dye binds to exposed DNA 

and interferes with the amplification during PCR. Inactivated or dead cells with damaged membranes have their nucleic 

acids exposed to the dye. Once the dye-DNA complex is photo-activated, the amplification of non-viable cells is blocked103. 

On the contrary, viable cells having their cell membranes still intact exclude the dye, leading to strong quantitative PCR 

(qPCR) signals in the presence of the dye104. Viability PCR has been employed to study the viability of not just commonly 

studied bacteria but also fastidious bacteria, spore-forming bacteria, protozoans, fungi, and even viruses. This aggrandizes 

how efficient the technique is in distinguishing dead microbial cells from viable cells and how useful it can be in microbial 

risk assessment105. 
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INFECTIOUS DISEASE TRANSMISSION AND QUANTITATIVE MICROBIAL RISK 

ASSESSMENT MODELING 

Both infectious disease transmission and quantitative microbial risk assessment modeling have been employed to decipher 

the source and degree of infectious disease risk, the role of various routes of transmission as well as possible control 

strategies106. Infectious disease transmission modeling has been used for decades by infectious disease epidemiologists to 

carry out epidemiological studies. One such modeling framework is the susceptible–infectious–recovered, which models 

person-to-person contact and infection transmission in a given population and has been in use since the 1900s107. 

Infectious disease transmission models use mathematical equations to visualize the spread of pathogens within a 

population. They can be used to determine the direction and degree of disease outbreaks and generate information on 

factors that influence disease transmission and the impact of the containment strategy108. In infectious disease models, it is 

usually assumed that individuals infected with an infectious disease are capable of spreading the disease to other individuals 

in the population109. In order to understand this process of transmission, infectious disease transmission models use various 

variables representing the numbers of individuals of several different attributes associated with infection in a population. 

Typically, these attributes include susceptible, exposed, infected, and removed. In the infectious disease transmission 

modeling, whether an individual is regarded as infectious or otherwise must be considered110. In a population, those who 

are infectious are those who are infected and could potentially spread infectious agents to other individuals. In contrast, 

those who are not infected but can acquire the infection are regarded as susceptible individuals within the population106. 

On the other hand, individuals who associate with the infected individuals who might have been infected but are not yet 

infectious are regarded as exposed, and lastly, those who have recovered and are no longer infectious and are immune from 

re-infection are referred to as removed. Being removed may mean such an individual was killed by the infection or 

developed complete post-recovery immunity. The underlying point is that removed individuals are incapable of further 

transmitting the infection111. Mathematical models that rely on the susceptible, infectious and removed attributes are referred 

to as the Susceptible-Infectious-Removed (SIR) models. In SIR model, the flow of infection typically starts from susceptible 

to removal. Individuals usually start as susceptible, become infective at a given time, recover after a certain infectious period, 

and thence become removed. This way, the possibility of acquiring infection for a susceptible individual usually relies on 

the status of individuals in the SIR model, which is the leading principle for the classic non-linear dynamics within disease 

transmission. On the other hand, the timing of removal following infection (the infectious duration) typically does not 

depend on other individuals and their status112. 

A simple SIR model can be expanded to include additional attributes germane to the transmission dynamics of a particular 

disease of interest. The attribute ‘exposed’ is often included, resulting in a corresponding model referred to as Susceptible-

Exposed-Infectious-Recovered (SEIR) model. Equally, addition or alteration of attributes transition is possible113. For 

example, individuals may lose their acquired post-recovery immunity over time, resulting in changing their status from the 

removed to the susceptible, thereby yielding the Susceptible-Infectious-Recovered-Susceptible (SIRS) model114. Similarly, 

the removed state can entirely be left out of the model if the infectious agent under study does not trigger the production of 

any form of post-recovery immunity, yielding Susceptible-Infectious-Susceptible (SIS) model115.  

One disadvantage of the basic SIR model is that it cannot discriminate whether an infected individual develops symptoms, 

even though this could be an essential transmission factor109. For instance, individuals infected with airborne respiratory 

pathogens are more likely to spread the infection if they develop frequent coughing and sneezing symptoms. Similarly, it is 

necessary to account for asymptomatic individuals for diseases in which asymptomatic infection (carriage) is the 

fundamental transmission driver, such as meningococcal or pneumococcal disease. Irrespective of the model specification, 

individuals are primarily assigned to a group based on specific health attributes, which could change from time to time. In 

the last ten years, modelers have faced increasing hurdles, the most important of which is the growing availability of 

genomic and other ‘omics’ data generated for diagnostic and surveillance, which has reformed the field of risk assessment116. 
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However, recent advances in computer algorithms and machine learning technology offer researchers an efficient 

alternative that overcomes these challenges117. 

 

WGS, MACHINE LEARNING AND MICROBIAL RISK ASSESSMENT 

Establishing the links between WGS or metagenomics data sets and specific risk indicators is especially important. However, 

the complex nature of genomic data concerning the number of microbial isolates remains a significant challenge, especially 

in applying conventional statistical tools82. Most microbial risk assessment models cannot discriminate strains in terms of 

their differences in resistance and virulence. Interestingly, machine learning technology and other novel models currently 

deployed in microbial risk assessment can analyze large data sets while accurately predicting the risk/in a population118. 

Machine learning algorithms are developed and employed for risk assessment. Over time, these algorithms are improved 

for better performance. These technologies can identify a combination of factors that allows the prediction of risk outcomes, 

thereby making risk assessment from big data sets more sensitive and reliable. Additionally, conventional risk assessment 

models usually use intermediate genetic interactions119. 

On the other hand, machine learning algorithms consider personal effects, which rely on interactions between 

environmental and genetic factors. Machine learning algorithms allow simultaneous prediction and interpretation using 

big data sets. Consequently, it is possible to unveil a particular phenotype and predict the presence of the protein from a 

sequence. With machine learning methods, it is also possible to carry out a microbial risk assessment with the flexibility to 

certain genetic acquired variations, which could favor the timely identification of strains with novel resistance or virulence 

determinants118. The applications of machine learning technology in genomics and as a placement for the classical genome-

wide association studies have proliferated in recent years. Far-reaching disease indicators have been studied through their 

application to gene expression data, where computer algorithms learn to discriminate between various disease phenotypes. 

Other successful applications of machine learning algorithms in health and disease include a better understanding of the 

relationship between patient genotypes, gene-expression-related phenotypes, and patient outcomes in cancer research, as 

well as the discovery of regions in bacterial genomes code for antibiotic resistance. The application of machine learning 

algorithms in risk assessment using WGS data has been described. WGS data becomes a powerful tool for microbial source 

tracking and risk assessment when analyzed using an appropriate source tracking algorithm. 

 

CONCLUSION 

In conclusion, the evidence reviewed here provides valuable information on the various medically necessary Campylobacter 

spp, their mechanism of resistance, important reservoirs, and most importantly, how advanced molecular techniques are 

deployed in microbial risk assessment and source tracking. In particular, the limitations of conventional methods, which 

include time-consumption, poor sensitivity and specificity on the one hand, and the superiority of WGS and machine 

learning technology, which include high reliability and robustness, on the other hand, have been explored. The application 

of machine learning and NGS technologies offer massive potential since they can be deployed in combination to track 

sources of outbreaks and predict risks. If timely deployed, they could help tackle outbreaks from their sources, thereby 

minimizing casualties and other impacts. Noteworthy, these technologies, despite their numerous advantages, their 

deployment in resource-limited settings is constrained by factors such as lack of expertise and the cost. 
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