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INTRODUCTION 

Inflammation is a defense process of the body's system due to infections from bacteria and viruses and can also be caused 

by damage to body tissues1. Acute inflammation is the first line of defense due to infection. Coronavirus 2019 (COVID-19) 

is an acute inflammatory disease that can cause an impaired inflammatory immune response2. COVID-19 disease is a clinical 

syndrome caused by SARS-CoV-2. Originally discovered in China in December 2019, this disease has spread worldwide 

and was declared a pandemic by WHO on 11 March 2020. This disease causes human acute respiratory system like other 

betacoronavirus types such as human coronavirus 229E, NL63, OC43, HKU1, Middle-East respiratory syndrome (MERS), 

dan Severe Acute Respiratory Syndrome (SARS)3-5. 
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 Abstract 

Inflammatory diseases are diseases characterized by inflammatory 
symptoms. Acute inflammatory disease can cause dysregulation of 
the inflammatory immune response, thereby inhibiting the 
development of protective immunity against infection. Among the 
acute inflammatory disease is COVID-19. The initial viral infection 
causes the antigen-presenting cells to detect the virus through a 
phagocytosis mechanism in the form of macrophage and dendritic 
cells. Lactobacillus fermentum and L. plantarum are gram-positive 
bacteria potentially serving as immunomodulators caused by 
inflammation and immune system response. Short-chain fatty acids 
(SCFA) produced by Lactobacillus can induce immune response 
through tolerogenic dendritic cells. This probiotic bacterium can 
induce the production of different cytokines or chemokines. 
Following the results of in vitro and in vivo tests, L. fermentum and L. 
plantarum can induce IL-10 release to activate regulatory T-cell and 
inhibit tumor necrosis factor-α (TNF-α) binding activity of nuclear 
factor kappa B (NF-κB). Literature review showed that 
dysregulation of inflammatory immune response disorders due to 
inflammatory disease could be treated using probiotic bacteria L. 
fermentum and L. plantarum. Therefore, it is necessary to conduct 
further studies on the potential of indigenous Indonesian strains of 
these two bacteria as anti-inflammatory and immunostimulants. 
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SARS-CoV-2 is transmissible through respiratory droplets, with a viral incubation period around 4-5 before initial 

symptoms emerge. About 97.5% of patients were reported to exhibit symptoms in 11.5 days6. The symptoms include fever, 

dry cough, breathing difficulty, muscle soreness, headache, and diarrhea. SARS-CoV-2 infections can turn into Acute 

Respiratory Distress Syndrome (ARDS) approximately 8-9 days after the first symptoms7. Severe ARDS in COVID-19 

patients can be indicated by breathing difficulty and low blood oxygen level8. ARDS is known to cause respiratory failure 

leading to death in 70% of COVID-19 cases. Viral infection or secondary infection in patients is known to cause cytokine 

storm and sepsis symptoms, which result in death in 28% of the patients9. Uncontrolled inflammation in COVID-19 disease 

is reported to lead to multiorgan damage, eventually resulting in organ failure, especially heart, liver, and kidney failures10. 

However, this inflammation can be treated using probiotic bacteria. 

Probiotic bacteria are the potential to treat diseases caused by inflammation and immune system responses11. Probiotic 

bacteria play roles in humoral immunity by interacting with intestinal epithelial cells and lamina propria-related cells 

through toll receptors. The probiotic bacteria are reported to lower cytokines that produce inflammatory cells and immune 

system decline through NF-KB transcription factor pathways12. Immune response and inflammation in the cell can be 

affected by NF-KB. In this regard, NF-KB has become the object of developing a treatment for diseases caused by 

inflammation13. Inflammatory response and immune system can be stimulated using Lactobacillus strain probiotic14.  

Lactobacillus is a gram-positive, non-spore-forming, lactic acid bacteria. This bacterium generates lactic acid as its primary 

product through carbohydrate fermentation. Morphologically, Lactobacillus can be in the form of a non-shortening bar in the 

chain form. Lactobacillus is a part of microbiota colonizing the mouth and digestive tract15. Lactobacillus colony species 

commonly found in the digestive tract are Lactobacillus plantarum and L. fermentum16. Lactobacillus plantarum and L. fermentum 

exhibit high probiotic potentials and become potential anti-inflammatory and immune responses by modulating pro-

inflammatory cytokines17. This paper reviews the anti-inflammatory and immunostimulant potentials of L. plantarum and 

L. fermentum reported in vitro, in vivo, and in clinical studies. This paper also provides information about the metabolite 

compounds of L. plantarum and L. fermentum as anti-inflammatory and immunostimulants in treating COVID-19. 

 

INFLAMMATION AND IMMUNE RESPONSE 

The virus is attached to the host through a receptor. Angiotensin 2 (ACE2) and TMPRSS218 are known to be the host receptor 

used by SARS-CoV-2 to infect the cell. This target receptor can be found in the respiratory tract, such as epithelial cells, 

alveolar epithelial cells, vascular endothelial cells, and macrophages in the lungs19-21. Viral replication and release may cause 

pyroptosis in the host cell and damage the associated molecular pattern, including ATP, nucleic acid, and ASC oligomer. 

The virus is recognized by epithelial cells, endothelial cells, and alveolar macrophages, triggering the formation of pro-

inflammatory cytokine and chemokine (including IL-6, IP-10, macrophage inflammatory protein 1α (MIP1α), MIP1β, and 

MCP1). This protein attracts monocyte, macrophage, and T cell to the infected area and promotes further inflammation by 

adding interferon-γ (IFN-γ) produced by T cells. 

The damaged immune response can cause further accumulation of immune cells in the lungs, leading to excessive pro-

inflammatory cytokines and eventually damaging the lungs. The produced cytokine storm circulates to other organs, 

causing multiorgan damage. Bronchoalveolar fluid (BALF) patients with COVID-19 symptoms are reported to contain 

Chemokine CCL2 and CCL7. Both chemokines are responsible for recruiting Cc-chemokine receptor 2-positive (CCR2+)22. 

Several cytokine and chemokine monocytes are reported to play roles in the inflammatory process in COVID-19 patients15,23-

25. The inflammation severity is indicated by the increase in cytokine and chemokine levels. Macrophage activation due to 

the viral infection can cause increased cytokine IL-6, IL-7, TNF-α, and inflammatory chemokine, including Cc-chemokine 2 

(CCL2), CCL3, CXC-chemokine 10 (CXCL10), and IL2. The irregularity of mononuclear phagocyte activation may cause 

hyperinflammation in COVID-19 patients. Some hypotheses exist on the mechanism contributing to monocyte 

hyperactivity due to macrophage in COVID-19 patients26,27. 
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The delayed type 1 interferon production leads to the increased cytopathic effect. The increased microbial threat may 

enhance the chemoattractant by alveolar epithelial cells, macrophages, and stromal cells, increasing the number of 

monocytes in the lungs. The monocytes then differentiate into pro-inflammatory macrophages through Janus-activated 

kinase (JAK)-signal transducer and activator of transcription (STAT). The T-cell will induce the monocyte-derived 

macrophages by producing granulocyte-macrophage colony-stimulating factor (GM-CSF), TNF-α, and IFNγ. 

Oxidized phospholipids (OxPLs) deposit in the lungs' infected area and activate monocyte-macrophage through Toll-like 

receptors 4 (TLR4), TRAF6, and NF-κB. The virus infection can trigger the TLR7 activation through single-stranded RNA 

virus recognition. The virus enters the macrophage cytoplasm through the type-1 interferon receptor. The virus activates 

the NLRP3 inflammasome and causes mature IL-1β and IL-18 secretions. The IL-1β cytokine can increase macrophage 

activation in autocrine or paracrine. It can also decrease interferon type I production in the infected lungs. Macrophage-

activated monocyte contributes to the formation of cytokine storm of COVID-19 by releasing many pro-inflammatory 

cytokines28. 

SARS-CoV-2 hampers the body's normal immune response, causing immune system damage and uncontrolled 

inflammatory response in severe COVID-19 patients. COVID-19 patients are reported to exhibit lymphopenia, lymphocyte 

activation and dysfunction, granulocyte and monocyte disorder, high cytokine levels, increased immunoglobulin G (IgG), 

and a total of antibodies29. Immune response patterns in Covid-19 patients are depicted in Figure 1. 

Lymphopenia is the primary marker of severe COVID-19 patients. Patients will likely exhibit declined CD4+ T, CD8+ T, 

and B cell levels30. T cell activation due to the virus infection may increase the IFN-γ, TNF-α, and IL-2 levels. In addition, 

lymphocytes are reported to release phenotypic programmed cell death protein-1 (PD1), T-cell immunoglobulin domain, 

mucin domain-3 (TIM3), and killer cell lectin-like receptor subfamily C member 1 (NKG2A). COVID-19 patients will likely 

exhibit increased neutrophil and decreased eosinophil, basophil, and monocyte. They also exhibit increased cytokine 

production, especially IL-1β, IL-6, dan IL-10. A higher IgG and total antibody titers are also observed in COVID-19 patients29. 

 

 
Figure 1. COVID-19 Immunopathological mechanism29. 
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Lactobacillus METABOLITE COMPOUND 

Lactobacillus produces intracellular and extracellular metabolism. The produced metabolite can provide information 

regarding the potential of bacteria on nutrition and its toxicity effect on the disease. Some metabolites are reported to be 

defrosting agents, antioxidants, antimicrobial agents, natural diet additives, and anti-inflammatory agents31. 

The fingerprint analysis of metabolite compounds can be performed using gas chromatography to determine Lactobacillus's 

intracellular and extracellular metabolite analysis32. Gas chromatography-Mass spectrometry (GC-MS) is a chromatography 

with high-resolution separation results and good sensitivity and specificity. This instrument can analyze metabolic products 

such as carbohydrates, fatty acids, organic acids, and amino acids33. The sample derivatization is necessary before 

performing GC-MS analysis34. Chaudary et al.35 identified 40 metabolites and five bacteria isolations, including L. plantarum 

DB-2, L. fermentum J-1, Pediococcus acidilactici M-3, L. plantarum SK- 3 dan P. pentosaceus SM-234. Metabolite compounds 

generated by Lactobacillus are presented in Table I. 

 

Table I. Identification of metabolite compounds of L. plantarum and L. fermentum35 

Lactobacillus plantarum DB-2 Lactobacillus fermentum J-1 Lactobacillus plantarum SK-3 
2-ethoxyethylamine (PubChem ID: 66970) 2-propanol,1-hydrazino (PubChem ID: 236167) 2-propanol,1-hydrazino (PubChem ID: 236167) 
2-hydrazino ethanol (PubChem ID: 8017) (Z)-9-octadecenamide (PubChem ID: 5283387) 4-amino-1-butanol  (PubChem ID: 25868) 
2-propanol,1-hydrazino (PubChem ID: 236167) 2,4,dimethylbenzaldehyde (PubChem ID: 61814) (Z)-9-octadecenamide (PubChem ID: 5283387) 
(Z)-9-octadecenamide (PubChem ID: 5283387) benzoic acid (PubChem ID: 243) 2,4-dimethylbenzaldehyde (PubChem ID: 

61814) 
acetic acid, acetic formic anhydride (PubChem 
ID: 75269) 

decane (PubChem ID: 15600) benzoic acid (PubChem ID: 243) 

2,4-dimetilbenzaldehyde (PubChem ID: 61814) dodecane (PubChem ID: 8182) decane (PubChem ID: 15600) 
benzoic acid (PubChem ID: 243) dodecanoic acid (PubChem ID: 236167) dodecane (PubChem ID: 8182) 
decane (PubChem ID: 15600) eicosanoid acid (PubChem ID: 10467) dodecanoic acid (PubChem ID: 236167) 
dl-2,3–butanediol (PubChem ID: 225936) Isovaleric geraniol (PubChem ID: 5362830) 2-propoxy-ethanamine (PubChem ID: 111878) 
dodecane dodecane (PubChem ID: 8182) Hexadecane (PubChem ID: 11006) 2-(2-propenyloxy)- ethanol (PubChem ID: 8116) 
dodecanoic acid (PubChem ID: 236167) 2,6,11,15-tetramethylhexadecane (PubChem ID: 

136331) 
isovaleric geraniol (PubChem ID: 5362830) 

ethylamine (PubChem ID: 6341) 1-methylhexyl hydroperoxide (PubChem ID: 
12981) 

Hexadecane (PubChem ID: 11006) 

formamide (PubChem ID: 713) isopropyl alcohol (PubChem ID: 3776) 2,6,11,15-tetramethylhexadecane (PubChem ID: 
136331) 

isovaleric geraniol (PubChem ID: 5362830) isopropyl myristate (PubChem ID: 8042) pentyl hydroperoxide (PubChem ID: 135961) 
hexadecane (PubChem ID: 11006) lactic acid (PubChem ID: 107689) isopropyl alcohol (PubChem ID: 3776) 
2,6,11,15-tetramethylhexadecane (PubChem ID: 
136331) 

hexadecanoic acid (PubChem ID: 985) isopropyl myristate (PubChem ID: 8042) 

isopropyl alcohol (PubChem ID: 3776) phenol,2,4-bis- (1,1dimethylethyl) (PubChem ID: 
7311) 

lactic acid (PubChem ID: 107689) 

lactic acid (PubChem ID: 107689) propinoic acid, 2-hydroxymethyl ester (PubChem 
ID: 126674963) 

nitrosomethane (PubChem ID: 70075) 

nitrosomethane (PubChem ID: 70075) hexahydro-3-(2- methylpropyl) pirolo[1,2- 
a]pirazin-1,4-dion (PubChem ID: 102892) 

hexadecanoic acid (PubChem ID: 985) 

hexadecanoic acid (PubChem ID: 985) tetracosane  (PubChem ID: 12592) phenol,2,4-bis- (1,1dimethylethyl) (PubChem 
ID: 7311) 

phenol,2,4-bis- (1,1dimethylethyl) (PubChem 
ID: 7311) 

tetradecane (PubChem ID: 12389) propylene glicol (PubChem ID: 1030) 

propylene glicol (PubChem ID: 1030) tetradecanoic acid (PubChem ID: 11005) hexahydro-3-(2- methylpropyl) pirolo[1,2- 
a]pirazin-1,4-dion (PubChem ID: 102892) 

hexahydro-3-(2- methylpropyl) pirolo[1,2- 
a]pirazin-1,4-dion (PubChem ID: 102892) 

undecane (PubChem ID: 14257) (R)-1,2-propanediol (PubChem ID: 259994) 

(R)-1,2-propanediol (PubChem ID: 259994)  tetradecane (PubChem ID: 12389) 
tetracosane (PubChem ID: 12592)  undecane (PubChem ID: 14257) 
tetradecane (PubChem ID: 12389)   
undecane (PubChem ID: 14257)   

 

The identified metabolites, such as isopropyl alcohol, dodecane, hexadecane, tetradecane, hexahydro-3-(2-methyl propyl) 

pirolo[1,2-a], pyrazine-1,4-dion, 2,4-dimethyl benzaldehyde, isovaleric geraniol, phenol, 2,4 bis (1,1-dimethyl); 2,6,11,15-

tetramethyl-hexadecanoic acid, (Z)-9-octadecenamide, are reported to be potential defrosting, antioxidant, antimicrobial, 

and anti-inflammatory agents31. In addition, short-chain fatty acids (SCFA) produced by probiotic bacteria, such as acetate, 
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butyrate, and propionate, play roles in decreasing nitric oxide (NO)36,37. Inflammation causes an immune response to 

activating cytokine in producing NO, resulting in increased NO. SCFA produced by Lactobacillus can induce immune 

response through tolerogenic dendritic cells (Figure 2). Fatty acid compounds can have an inhibitory effect on inflammation, 

especially omega-6 fatty acids. However, the interaction mechanism of omega-6 fatty acids and their lipid mediators in 

inflammation is still not well understood38. 

The tolerogenic process of dendritic cells makes the T-cell (CD4+) differentiate into T-cell regulators (Treg) and inhibits 

cytokine production by neutrophils and macrophages. Tolerogenic dendritic cells produce anti-inflammatory cytokines, 

interleukin-10 (IL-10), and transforming growth factor-β (TGF-β). A tolerogenic dendritic cell is a potential candidate for 

specific immunotherapy37. 

 

 
Figure 2. SCFA's work mechanism in decreasing inflammatory activities37. 

 

ANTI-INFLAMMATORY AND IMMUNOSTIMULANT ACTIVITIES OF Lactobacillus 

Anti-inflammatory and immunostimulant activities of Lactobacillus have been widely studied through in vitro and in vivo 

research. Table II displays several studies on the anti-inflammatory and immunostimulant activities of L. plantarum with 

different strains. Lactobacillus’ immunostimulant activities can occur through the increase in cytokine IL-10 production in 

mononuclear cells (macrophage and T-cell) in the intestine39. A study shows that L. plantarum CM can inhibit the binding 

activity of NF-κB in response to TNF-α. This response weakens the release of monocyte chemotactic protein 1 (MCP-1), pro-

inflammatory chemokine, and NF-κB gene and inhibits the proteasome functions. Lactobacillus plantarum CM inhibits the 

activation of NF-κB from TNF through MyD88-dependent and MyD88-independent pathways. Lactobacillus plantarum can 

also inhibit TNF-α-induced MCP-1 production in Caco-2 cells and lower NF-κB, mitogen protein kinase, and production of 

TNF-α or IL-1β40-42. 

SCFAs 
Acetate 
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Chemokines ↓ 

TGF-β ↑ 
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In vivo studies report that L. plantarum and L. fermentum possess inflammatory activities43,44. The effective dose of probiotic 

bacteria to treat inflammation is reported to be 1x108 – 109 CFU/mL44,45. Lactobacillus fermentum is reported to significantly 

lower malondialdehyde levels, TNF-α, IL-6, and resistin in mouse blood serum. Lactobacillus bacteria is also reported to 

increase catalase, superoxide dismutase, glutathione peroxidase, and adiponectin activities, suppressing the inflammation-

inducing- oxidative stress. Most studies show that L. plantarum induces IL-10 secretion in splenocytes and mesenteric 

lymphocytes, blocking the expression of pro-inflammatory cytokines, IL-1β, IL-6, TNF-α, COX-2, forkhead box P3 (Foxp3), 

suppressor of cytokine signaling 3 (SOCS3). In vivo study shows a decline in mucose IL-12, IFN-γ, and immunoglobulin G2a 

in mice46. The treatment using L. plantarum Biocenol™ LP96 was reported to lower the expression of IL-1α, and IL-8 genes 

increase the IFN-γ and cytokine IL-10 secretion47. This paper reviewed in vitro and in vivo studies to show Lactobacillus’ 

metabolite product potential in inhibiting inflammatory activities. 

 

Table II. Results of in vitro and in vivo studies on anti-inflammatory and immunostimulant activities of L. plantarum and L. fermentum. 

Bacterial Strain Method Animal/cell Dose Inhibitory effect Reference 

L. plantarum APsulloc 
331261 

in vitro THP1 cell - Inducing the expression of macrophage 
cytokine, IL-1β, inflammatory cytokine, 
and IL- 10, 

48 

L. plantarum L15 in vitro Caco- 2 - Lowering the expression of TLR4 and 
MyD88 genes and genes associated with 
NF-κB signalling pathways. 

49 

L. plantarum M2 and L. 
plantarum KO9 

in vitro Caco- 2 - Inhibiting TNF-α production 50 

L. plantarum MYL26 in vitro Caco- 2 - Inhibiting NF- κB, MAPK, TOLLIP, 
SOCS1, SOCS3, 
and IκBα expression 

51 

L. plantarum Lp62 in vitro Intestinal epithelial 
cell HT-29, 
macrophage J774 

 
- 

Inhibiting production of IL-8, TNF-α, 
IL1-β, and IL-17. 

52 

L. plantarum CAU1055 in vitro RAW264.7 cells - Inhibiting production NO, TNF-α, IL-6.  53 
L. plantarum K8 in vitro Intestinal epithelial 

cell HT-29 
- Inhibiting NF- κB and MAPK, 41 

L. plantarum A41 and L. 
fermentum SRK414 
 

in vitro Intestinal epithelial 
cell HT-29 

- Decreasing the regulation of mRNA 
expression from proinflammatory 
cytokine TNF- α, IL1β, and IL-8 and 
enhancing intestinal barrier integrity by 
increasing protein ZO-1 expression 

17 

L. plantarum K8 in vitro Monocytic THP-1 cell 
human 

- Inhibiting TNF- α , IL-1, NF-κB 
Increasing MAPK, 
Inhibiting NOD2 production 

42 

L. fermentum MCC 2760 in vitro Caco- 2, intestinal 
epithelial cell HT-29 

- Increasing cytokine IL-10 production 
and inhibiting IL-6 production 

54 

L. fermentum CECT5716 in vitro RAW 264.7 cells - Decreasing the proinflammatory 
cytokine TNF- α, IL1β, and IL-6 

55 

L. plantarum 
CGMCC1258 

in vivo Mouse without IL- 10 109 CFU/mL Decreasing IFN-γ, TNF-α, and  MPO 
production 

56 

L. plantarum Lp91 in vivo Mouse without IL- 10 109 CFU/mL Reducing expression of TNF-α and 
COX-2, 
Increasing the production of IL-10 

57 

L. plantarum OLL2712 in vivo obese and type 2 
diabetic KKAy mice 

- Increasing cytokine IL-10,  suppressed 
proinflammatory cytokine level 

58 

L. fermentum DALI02 in vivo Mouse 
hyperlipidemia 

109 CFU/mL Decreasing expression of TNF-α, IL- 6, 
and resistin and significantly increase  
APPN level 

43 

L. fermentum SNR1 in vivo Wistar Albino Rats 108 CFU/mL Increasing IL- 10, IL-6 59 
L. fermentum and L. 
salivarius 

in vivo DSS mouse colitis 5×108 
CFU/mL 

Improving  the colonic expression of 
markers in immune response 

60 

L. fermentum KBL374 
and L. fermentum 
KBL375 

in vivo Female mouse 
C57BL/6N 

109 CFU/mL Increasing cytokine level associated 
with Th1, Th2-, and Th17, 
Increasing IL- 10, and increasing 
CD4+CD25+Foxp3 
+Treg 

61 

L. plantarum LP-Onlly in vivo Mouse without IL- 10 109 CFU/mL Lowering the inflammation and 
histological injury value; increasing the 
number of bifidobacteria and lactobacili 

62 
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good bacteria, decreasing the number of 
pathogenic bacteria of eterococci and 
Clostridium perfringens 

L. plantarum LP3457 in vivo Mouse ZDF 108 CFU/mL Decreasing IL-1β, IL-6, and CRP 
expression, 
Increasing IL-10 level 

63 

L. plantarum K8 in vivo Healthy mouse 109 CFU/mL Reducing expression of TNF-α and IL-6 64 
L. plantarum ZS2058 
(ZS2058) and L. 
rhamnosus GG 

in vivo Specific pathogen-
free mice 

5×109 
CFU/mL 

Changing in the levels of tissue necrosis 
factor (TNF)-α, IL-10 and 
myeloperoxidase (MPO) 

65 

L. fermentum XY18 in vivo Gastric injury model 
group mice 

1×109 
CFU/kg 

Reducing expression of TNF-α, IL-12 
and IL-6 

66 

L. fermentum MCC2760 in vivo Hypercholesterolemic 
C57BL6 Mice 

0.95 log 
CFU/mL 

Increasing cytokine IL-10,  suppressed 
proinflammatory cytokine level TNF-α,  
IL-12 and IL-6 

67 

L. fermentum DALI02 in vivo Hyperlipidemic 
mouse 

109 CFU/mL Reducing expression of TNF-α and IL-6 43 

L. fermentum CQPC07 in vivo Obessed mouse 109 CFU/kg Decreasing the number of inflammatory 
cytokine interleukin (IL)-1β, tumor 
necrosis factor-α (TNF-α), 
IL-6, and interferon- γ (IFN-γ), and 
increasing the production of cytokine 
IL- 10 and IL-4. 

45 

 

Lactobacillus IN THE TREATMENT OF COVID-19 

Probiotics have an essential role in the eubiosis of the human microbiota68. Patients with COVID-19 symptoms had lower 

intestinal bacteria counts than normal patients69. These gut bacteria can enhance the immune response70. Probiotics and their 

metabolites can be used as a complementary strategy other than vaccines that can inhibit COVID-1971. Lactobacillus can 

inhibit the development of viruses through various mechanisms, direct interaction between probiotics and viruses; 

stimulation of the immune system; and virus-inhibiting metabolites72. The metabolites produced by lactic acid bacteria can 

inhibit the development of pathogenic bacteria and viruses73. These metabolites include amino acid derivatives (indolelactic 

acid, phenyllactic acid 2-hydroxy-4-,2-hydroxy-4-methylpentanoic acid, and 2-hydroxy-4-methylthio butanoic acid), fatty 

acids (3-hydroxy-5-cis-dodecanoic acid and 3-hydroxydodecanoic acid), organic compounds (acetic acid, lactic acid, 

propionic acid, succinic acid, and benzoate acid), cyclic peptides (cyclo(L-Phe-L-Pro) reutericyclin), and other groups of 

chemical compounds (δ-dodecalactone)74. 

Clinical trials showed that 75.61% of patients treated with probiotic bacteria had a shorter treatment time than those not 

treated with probiotics. These bacteria can reduce secondary infections and moderate the patient's immune system based 

on the analytical parameters of IL-6, CRP, total T lymphocytes, NK cells, B lymphocytes, CD4 + T cells, CD8 + T cells, and 

CD4/CD8 ratio75. In another study, patients receiving probiotic bacteria L. plantarum (KABP022, KABP023, and KAPB033) 

with a combination of P. acidilactici KABP021 for 30 days showed inhibition against the COVID-19 virus76. In silico studies 

have also carried molecular docking on the metabolite L. plantarum Probio-88 to the SARS-CoV-2 helicase. The high binding 

affinity and hydrogen bonding suggests that the association of PlnE and PlnF on the helicase of SARS-COV-2 may inhibit 

virus replication77. 

Indonesia abounds in biodiversity, including microorganisms. Lactobacillus plantarum and L. fermentum indigenous strains 

of Indonesian have potential as anti-inflammatory and immunostimulant. Our preliminary research showed that the 

superior candidate bacteria from the two strains had antibacterial activity and could withstand acidic conditions and high 

temperatures. Therefore, further study is needed to determine the anti-inflammatory and immunostimulant activities to be 

used as an immunomodulator for COVID-19. 
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CONCLUSION 

Based on the results of experimental and clinical research data, L. plantarum and L. fermentum have activities as anti-

inflammatory and immunostimulants in COVID-19 patients. Lactobacillus can reduce the activity of inflammatory cytokines 

IL-1β, IL-6, TNF-, COX-2, Foxp3, SOCS3 suppressor, and increase IL-10. Patients treated with probiotics had a faster recovery 

time than those not treated with Lactobacillus. Lactobacillus can reduce secondary infection and increase immune response in 

COVID-19 patients. Bioactive compounds from these bacteria can also cause anti-inflammatory and immunostimulant 

activities. 
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