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INTRODUCTION 

The most frequent cause of hyperthyroidism and thyrotoxicosis is Graves' disease (GD)1,2. It is a disorder with widespread 

symptoms that primarily affects the liver, eyes, heart, skeletal muscles, skin, and other soft tissues. Inadequate GD diagnosis 

can set the stage for thyroid storm3-5, which has a high mortality and morbidity rate6,7. The most common organ-specific 

autoimmune disease is thyroid autoimmunity. Several potential processes, such as regulating the integrity of intercellular 

junctions and microbial transcriptomic, proteomic, and metabolic changes, are believed to be linked to altered microbiota 

composition in the gut and decreased microbial products, particularly short-chain fatty acids8. According to numerous 

studies, protein tyrosine phosphatase, nonreceptor type 22 (lymphoid) isoform 1 (PTPN22), is an excellent target for 

therapeutic intervention to slow the progression of GA9. Methimazole and propylthiouracil are two potent GD inhibitors 

reported to target GD thus far. 

On the other hand, these substances have several adverse side effects and take a long time (12 to 18 months) to inhibit the 

PTPN22 receptors when administered10. Additionally, continued use of these medications results in the development of 

drug resistance. Regardless of the reported outcomes of methimazole and propylthiouracil regarding their capacity to 

inhibit TSH and TRAb, the likelihood of pharmaceutical use still needs to be sufficiently reliable. Therefore, predicting the 

characteristics of drug-likeness candidates is necessary before moving on to the synthesis and clinical testing phases, 
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 Abstract 

Graves' disease (GD) is an autoimmune condition that frequently 
causes hyperthyroidism and thyrotoxicosis. Protein tyrosine 
phosphatase, non-receptor type 22 (lymphoid) isoform 1 (PTPN22), 
is a promising therapeutic candidate for treating GD, rheumatoid 
arthritis, type 1 diabetes, and other autoimmune disorders. In this 
dataset, 31 molecular compounds and two standard drugs were 
optimized using the semi-empirical PM7 theory method via 
MOPAC v22.0.4 to reveal the key influencing factors contributing to 
their grave's disease inhibition activity and selectivity. Using 
QSARIN software, the acquired properties/descriptors were used 
to create a quantitative structural activities relationship (QSAR) 
model, and the similarities between the observed and predicted 
pIC50 values were examined. A molecular docking simulation study 
also uncovers non-covalent interactions between the investigated 
compounds and the receptors. The observed ligand-protein 
interactions with GD proteins (PDB ID 2XPG and 4QT5) and 
PTPN22 (PDB ID 3BRH) were investigated. The pharmacokinetics 
(ADMET) properties were also investigated. Finally, molecular 
dynamics (MD) simulation and MM/GBSA studies that 
demonstrated stable trajectory and molecular properties with a 
consistent interaction profile were used to validate the stability of 
the compounds in the complex with PTPN22. 
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especially in light of long-term use, side effects, and toxicity of the drugs4. 2D-QSAR, docking simulations, and molecular 

dynamics simulation approaches are promising tools to screen inhibitors based on quantitative interactions between 

inhibitors and GD receptors11,12. Abdullahi et al.13 studied the inhibitory activities of 32 Influenza A virus inhibitors using a 

QSAR, 3D-QSAR, molecular docking, and ADMET prediction model. They used the genetic function approximation (GFA) 

algorithm and feature-selection techniques to identify the structural characteristics of inhibitors that influenced how well 

they inhibited the Influenza A virus. Edache et al.14 to assist in the development of new inhibitors, a receptor-dependent 2D 

and 3D-QSAR model based on a subset of 30 inhibitors of rheumatoid arthritis was created. To bolster their claims, they also 

create docking, molecular dynamics simulations, and calculations of lipophilicity indices. In light of this, we considered 

performing computational studies for screening a QSAR analysis for 31 datasets as potential PTPN22 inhibitors in this work. 

The current investigation aimed to clarify the structural features and binding mechanism of the receptors for GD while also 

designing new molecules with a higher affinity for the clinical management of GD. 

 

MATERIALS AND METHODS 

Materials 

The hardware used was an HP laptop computer with the following specifications: Processor (Intel® Core™ i3-5005U CPU 

@ 2.00 GHz), install RAM (8.00 GB), system type (64-bit operating system, x64-based processor), Edition (Windows 10 Pro 

for Workstations), Version 22H2. The software includes Avogadro v1.2 software, MOPAC v22.0.4 software, PaDEL v2.21, 

QSARINS v2.2.41, AutoDockTools v1.5.7, Discovery Studio 2020 Client, AMDock (Assisted Molecular Docking) v1.5.2, 

NAMD v2.14, VMD program v1.9.3, MolAlCal program, Marvin Sketch, and DTC Laboratory y-Randomization v1.2.jar. 

The online web server SwissADME (http://www.swissadme.ch/index.php) was used for the pharmacokinetics properties 

prediction, while the CHARMM-GUI (https://www.charmm-gui.org) was used for generating protein-ligand parameter 

files for molecular dynamics simulations. 

Thirty-one active compounds were collected from the PubChem database (AID 435024), and the bioactivity of the 

compounds was described as inhibitory concentration (IC50 in (μM)). These IC50 were commuted to the logarithmic values 

(pIC50 = -Log10 (IC50 x 10-6)). The 3D structures of 31 compounds were optimized by applying Avogadro v1.2 software using 

the universal force field (UFF) with the steepest descent algorithm and subsequently by the semi-empirical PM7 method 

using MOPAC v22.0.415. The PaDEL v2.21 was used to produce the molecular descriptors16. Using QSARINS v2.2.416, the 

initial 1444 calculated descriptors from PaDEL were reduced to 568 based on intercorrelated descriptors with zero and 

constant values. Three descriptors were the maximum number that could be used in the model during the generation of the 

QSAR model using the genetic algorithm-multiple linear regression (GA-MLR) method. The dataset was divided into 

training and test sets, and due to the smaller number of compounds, the models were evaluated using internal cross-

validation and fitting criteria17. An inquiry into the applicability domain was conducted to assess the efficacy of the 

prediction of the modeled inhibition for the whole dataset. Williams and Insubia graphs were utilized to examine outliers 

and datasets outside of warning leverage (ℎ∗), which is calculated as 3𝑝′ 𝑛⁄ , where 𝑝′ is the number of model-adjustable 

parameters and the number of the training dataset18. The ligand PubChem CIDs, IUPAC names, and the pIC50 needed for 

2D-QSAR are presented in Table I. 

 
Table I. Retrieval of phytochemical compounds from PubChem database. 

S/N PUBCHEM_CID Compound Name pIC50 (μM) 

1 647501 1-ethyl-6-methyl-3-phenyl-1H,5H,6H,7H-pyrimido[5,4-e][1,2,4]triazine-5,7-dione 4.9821 
2 654089 (3aR,4S,9bS)-6-hydroxy-3H,3aH,4H,5H,9bH-cyclopenta[c]quinoline-4-carboxylic acid 5.0783 
3 573747 3,4-bis(thiophene-2-carbonyl)-2,3-dihydro-1,2,5-oxadiazol-2-ol 5.9066 
4 3239469 4-[(12-{1,4-dioxa-8-azaspiro[4.5]decan-8-yl}-8-oxo-15-oxa-14-

azatetracyclo[7.6.1.0²,⁷.0¹³,¹⁶]hexadeca-1(16),2(7),3,5,9,11,13-heptaen-10-yl)amino]butanoic 
acid 

4.208 

5 66541 1,6-dimethylpyrimido[5,4-e][1,2,4]triazine-5,7-dione 5.9066 
6 460747 1,3,6-trimethyl-1H,2H,5H,6H,7H,8H-pyrimido[5,4-e][1,2,4]triazine-5,7-dione 5.9066 
7 1973720 3-[(2-hydroxyethyl)dimethylamino]-N-[2-methyl-1-(trihydroxy-λ⁴-sulfanyl)propan-2-

yl]propanamide 
5.3898 

8 2012947 4-[(5Z)-5-{[5-(1,3-benzothiazol-2-yl)furan-2-yl]methylidene}-4-oxo-2-sulfanylidene-1,3-
thiazolidin-3-yl]butanoic acid 

5.3212 

https://portal.issn.org/resource/ISSN/2621-4814
http://www.swissadme.ch/index.php
https://www.charmm-gui.org/
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9 3116376 (1S,2S,3aS,4R,9bS)-8-acetyl-1-chloro-2-[(2-nitrophenyl)sulfanyl]-
1H,2H,3H,3aH,4H,5H,9bH-cyclopenta[c]quinoline-4-carboxylic acid 

4.2377 

10 1714876 N-{4-[(5-ethyl-1,3,4-thiadiazol-2-yl)sulfamoyl]phenyl}-2-oxo-8-(prop-2-en-1-yl)-2H-
chromene-3-carboxamide 

5.0256 

11 86261486 N'-[(E)-(2-hydroxy-3-methoxyphenyl)methylidene]-5-nitro-1-benzothiophene-2-
carbohydrazide 

4.8825 

12 1334608 2-{[5-(ethoxycarbonyl)-12-(2-hydroxybenzoyl)-4-methyl-2-oxo-6-thia-1,8-
diazatricyclo[7.4.0.0³,⁷]trideca-3(7),4,8,10,12-pentaen-10-yl]sulfanyl}acetic acid 

5.6209 

13 9564046 4-[(2-bromo-4-{[(4Z)-2,5-dioxoimidazolidin-4-ylidene]methyl}-6-
ethoxyphenoxy)methyl]benzoic acid 

4.4251 

14 9595043 2-{4-[(E)-{[(4-hydroxyphenyl)formamido]imino}methyl]phenoxy}-N-(3-
nitrophenyl)acetamide 

5.3295 

15 5995173 2-{2-ethoxy-4-[(E)-{[(4-{2-[(4-methylphenyl)amino]-1,3-thiazol-4-
yl}phenyl)formamido]imino}methyl]phenoxy}acetic acid 

5.9066 

16 2545524 2-(4-{[(2Z,5Z)-3-[2-(1H-indol-3-yl)ethyl]-2-[(4-methoxyphenyl)imino]-4-oxo-1,3-
thiazolidin-5-ylidene]methyl}phenoxy)acetic acid 

5.6946 

17 2975144 3-{[5-(ethoxycarbonyl)-12-(2-hydroxy-5-methoxybenzoyl)-4-methyl-2-oxo-6-thia-1,8-
diazatricyclo[7.4.0.0³,⁷]trideca-3(7),4,8,10,12-pentaen-10-yl]sulfanyl}propanoic acid 

4.314 

18 2229326 4-[(3aR,4R,9bS)-8-[(3-chloro-2-methylphenyl)sulfamoyl]-3H,3aH,4H,5H,9bH-
cyclopenta[c]quinolin-4-yl]benzoic acid 

4.8054 

19 5756371 4-({2-bromo-4-[(1E)-2-cyano-2-(3-fluorophenyl)eth-1-en-1-yl]phenoxy}methyl)benzoic 
acid 

4.9317 

20 3164059 1-ethyl-6-methyl-3-[(1E)-2-phenylethenyl]-1H,5H,6H,7H-pyrimido[5,4-e][1,2,4]triazine-
5,7-dione 

5.7964 

21 7217786 1,6-dimethyl-3-propyl-1H,5H,6H,7H-pyrimido[5,4-e][1,2,4]triazine-5,7-dione 4.415 
22 9595032 5-chloro-2-methoxy-N-(3-{[1,2,4]triazolo[4,3-b]pyridazin-6-yl}phenyl)benzamide 5.9066 
23 25250764 2-{4-[(E)-{[(4-{2-[(4-chlorophenyl)amino]-1,3-thiazol-4-

yl}phenyl)formamido]imino}methyl]phenoxy}acetic acid 
5.0665 

24 6104167 4-(3-{[(E)-N'-[(E)-[(2H-1,3-benzodioxol-5-yl)methylidene]amino]carbamimidoyl]sulfanyl}-
2,5-dioxopyrrolidin-1-yl)benzoic acid 

5.3562 

25 1587127 3-(2-{[(4E)-1-(4-chlorophenyl)-2,5-dioxoimidazolidin-4-ylidene]methyl}-1H-pyrrol-1-
yl)benzoic acid 

5.5599 

26 1516220 4-{3-[(5Z)-5-[(3,4-dimethoxyphenyl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-
yl]propanamido}benzoic acid 

5.1922 

27 8853383 3-[(2E)-3-{4-[(4-chlorophenyl)methoxy]phenyl}-2-cyanoprop-2-enamido]benzoic acid 4.9512 
28 2354598 5-methyl-2-[(1E)-2-(4-methyl-3-nitrophenyl)ethenyl]-4-oxo-3H,4H-thieno[2,3-

d]pyrimidine-6-carboxylic acid 
5.9066 

29 2867365 3-[(2E)-3-{4-[(4-bromophenyl)methoxy]-3-ethoxyphenyl}-2-cyanoprop-2-enamido]benzoic 
acid 

4.8247 

30 1889464 4-methyl-3-[2-(4-nitrophenyl)-1,3-dioxo-2,3-dihydro-1H-isoindole-5-amido]benzoic acid 4.8604 
31 2545467 3-{5-[(3Z)-1-{[(4-methoxyphenyl)carbamoyl]methyl}-2-oxo-2,3-dihydro-1H-indol-3-

ylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl}propanoic acid 
5.9066 

Standard 

1 1349907 Methimazole 
2 657298 Propylthiouracil 

 

Methods 

Docking simulations 

The crystallized structure of “a major histocompatibility complex (MHC) class I-peptide complex” (PDB ID 2XPG), crystal 

coordinates of 3BD10 (PDB ID 4QT5) “a monoclonal antibody against the TSH”, and “protein tyrosine phosphatase PTPN-

22 (LYP) bound to the mono-2 phosphorylated LCK active site peptide” (PDB ID 3BRH) was transferred from the Protein 

Data Bank (https://www.rcsb.org/). The protein structure preparation and visualization were carried out using the 

AutoDockTools v1.5.7 and Discovery Studio 2020 Client, and molecular docking was accomplished using AMDock v1.5.219 

with AutoDock Vina20. Thirty-one carefully chosen optimized datasets were docked into the catalytic site using the 

AutoLigand method21. Molecular docking was performed using the Optimal Box Size 1.122. AMDock generates complex 

interaction profiles and ranks compounds by binding affinity. The affinity scoring estimated Ki and ligand efficiency is based 

on the protein-ligand interactions20. Table II describes the various receptors used in the molecular docking simulation 

screening. 

 

 

 

 

https://www.rcsb.org/
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Table II. Description of receptor used for the virtual molecular docking screening. 

Header Organism Crystal structure PDB ID Resolution (Å) Ref. 

Immune 
system 

Homo 
sapiens 

Crystal structure of an MHC class I-peptide complex 2XPG 2.60 McMahon et 
al.23 

Immune 
system 

Mus 
musculus 

Crystal structure of 3BD10: a monoclonal antibody 
against TSH 
 receptor 

4QT5 2.50 Chen et al.24 

Hydrolase Homo 
sapiens 

Protein tyrosine phosphatase PTPN22 (LYP) bound to 
the mono-phosphorylated LCK active site peptide 

3BRH 2.20 Seidel et al.25 

 

In silico pharmacokinetics 

Target identification is the first step in drug development, and ADMET prediction is the last. Identifying these traits early in 

the drug development process is essential to cut time and costs. The ADMET pharmacokinetics parameters were measured 

to determine how this drug moved through the body26. Using the SwissADME web server, the physiochemical 

characteristics and ADMET predictions for the top-screened compounds were evaluated27. Datasets that met the chosen 

criteria, in particular Lipinski's rule, were chosen for further study to decrease the likelihood that these compounds would 

fail in clinical trials and to increase their likelihood of one day becoming drug candidates. 

Molecular dynamics simulations 

Molecular dynamics (MD) simulations were performed to capture changes in protein conformation, ligand binding, and 

folding by estimating the movement of each atom in the protein over time. The PDB files for the complex were sent to 

CHARMM-GUI's Solution Builder feature to create input files for the MD simulation28. The force field CHARMM36m29 was 

used to generate the simulation parameter files for the protein-ligand complex. Throughout the simulation run, the protein-

ligand complex was kept hydrated using the TIP3P system. Furthermore, the simulation box was neutralized using the 

counter ions (NaCl 0.15 M)—twenty thousand steps (or 40 fs) of energy minimization and equilibration using NVT, 

respectively. Molecular simulations were run with period boundary conditions to minimize edge effects. Ten nanoseconds 

of NPT production were put to use. This task was completed using NAMD v2.1430. The VMD program31 was used to assess 

the MD simulation trajectory results. The complex's free binding energy was then determined using the MolAlCal program 

and the generalized Born surface area (MM/GBSA) method32. The calculated free binding energy is computed from the 

results of MD simulations using the following Equations 1 to 3. 
 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐻 − 𝑇∆𝑆 ≈ ∆𝐸𝑚𝑚 + ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆 [1] 
∆𝐸𝑚𝑚 = ∆𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑤  [2] 
∆𝐺𝑠𝑜𝑙 = ∆𝐺𝐺𝐵 + ∆𝐺𝑆𝐴    [3] 

 

∆𝐸𝑚𝑚and - 𝑇∆𝑆 denotes the gas phase MM energy and conformational entropy, respectively. ∆𝐸𝑚𝑚 contains electrostatic ∆𝐸𝑒𝑙𝑒, van der 
Waals energy ∆𝐸𝑣𝑑𝑤, and ∆𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 of bond, angle, and dihedral energies. The solvation-free energy ∆𝐺𝑠𝑜𝑙  is the sum of a non-electrostatic 
solvation component, ∆𝐺𝑆𝐴, and the electrostatic solvation energy, ∆𝐺𝐺𝐵  

 

Design new drugs 

Novel compounds were created by creating analogs to increase the anti-Graves' disease activity of the 31 compounds and 

two tested (standard) drugs. The methods used to complete the task were Marvin Sketch, Avogadro, MOPAC, and PaDEL. 

 

RESULTS AND DISCUSSION 

The 2D-QSAR modeling studies on the compounds chosen in Table I as novel inhibitors of GD were completed. Predictions 

of the anti-Graves' disease responses (pIC50) for the compounds were made using the constructed 2D-QSAR models in this 

study under the influence of some strong statistically significant molecular descriptors33. The best descriptors matrix feature 

selection was carried out using the genetic function approximation (GFA) model-building protocol of QSARIN v2.2.4. The 

four descriptors in Equation 4 and the GFA-MLR modeling techniques led to successfully constructing the 2D-QSAR 

models, whose model internal and external validation metrics are displayed in Table III. Table III displays the findings of 

the approval boundaries processed for the 2D-QSAR model. Table III findings indicate that the cross-validation (LOO) 

method produced an excellent correlation and that the QSAR model is flexible to this activity. This is a preliminary indication 

of the proposed QSAR model's stability and robustness. 

https://portal.issn.org/resource/ISSN/2621-4814
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𝑝𝐼𝐶50 = −0.684 (𝐴𝑇𝑆𝐶7𝑐) + 0.0839(𝑉𝐸3_𝐷𝑡) + 0.205(𝑆𝑑𝑠𝑠𝐶) − 1.1538(𝑚𝑎𝑥𝑠𝑠𝐶𝐻2) + 6.4854 [4] 

 
Table III. Validated parameters of the QSAR model. 

Validation parameters Model training set QSAR validation standard 

R2 0.7427 >0.6 
R2adj 0.6821 >0.6 
LOF 0.1854 the smaller the better 
F 12.267 >0.33 
CCC tr 0.8523 >0.85 
Q2LOO 0.631 >0.6 
R2ext: 0.512 >0.5 
k' 1.0676 0.85 o k’ > 1.15 
k 0.9313 0.85 o k0 o 1.15 

 

Table IV presents 22 training datasets, 9 test sets, the predicted pIC50, and the residues of the QSAR prototype. Meanwhile, 

the descriptor values of four descriptors with high correlation with pIC50 are also presented. It displayed data comparing 

the observed pIC50 and validation sets to the predicted pIC50 for the anti-Graves' disease modeling values. Therefore, it can 

be concluded that the model is error-free because the predicted pIC50 normalized values agreed with the test set. 

 
Table IV. Status, selected descriptors, and residual values for both training and test datasets. 

S/N Status ATSC7c VE3_Dt maxssCH2 pIC50 Pre. pIC50 Residues 

1 Training -0.0845 -5.2447 0.4846 4.9821 5.4866 0.5045 
2 Training -0.2685 -3.2056 0.7676 5.0783 5.3373 0.259 
3 Training -0.0326 -8.6335 0 5.9066 5.6767 -0.2299 
4 Training 0.0597 -16.0571 0.7402 4.208 4.0516 -0.1564 
5 Test -0.0249 -5.6788 0 5.9066 5.8769 -0.0297 
6 Training 0.0179 -7.1821 0 5.9066 5.9476 0.041 
7 Test -0.0507 -4.7173 0.5794 5.3898 5.4145 0.0247 
8 Test 0.08642 -2.7066 0.5291 5.3212 5.9023 0.5811 
9 Test -0.1428 -11.5179 0.7939 4.2377 4.5239 0.2862 

10 Training -0.2754 -4.4806 0.8003 5.0256 5.0584 0.0328 
11 Test -0.14178 -6.6097 0 4.8825 5.962 1.0795 
12 Training -0.7034 -10.8043 0.2345 5.6209 5.5784 -0.0425 
13 Training 0.1652 -7.4005 0.4430 4.4251 4.8699 0.4448 
14 Test 0.0436 -14.7326 0 5.3295 5.0375 -0.292 
15 Training -0.0505 -6.5257 0.38184 5.9066 5.2399 -0.6666 
16 Training 0.0349 -3.2176 0.7149 5.6946 5.5169 -0.1778 
17 Training 0.1114 -15.0266 0.4857 4.314 4.4148 0.1008 
18 Training 0.0213 -8.3479 0.8779 4.8054 4.5643 -0.2411 
19 Training 0.1371 -8.5014 0.3456 4.9317 5.1646 0.233 
20 Training -0.1405 -6.1374 0.4770 5.7964 5.4438 -0.3526 
21 Test 0.0175 -4.5094 0.9292 4.415 5.1402 0.7251 
22 Test -0.0716 -3.5557 0 5.9066 6.1947 0.2881 
23 Training 0.2395 -8.4004 0 5.0665 5.3385 0.272 
24 Test -0.4872 -3.2367 0.1850 5.3562 6.0481 0.692 
25 Training 0.2571 -7.1857 0 5.5599 5.3354 -0.2245 
26 Training -0.3019 -11.8363 0.3541 5.1922 5.4816 0.2894 
27 Training -0.1032 -6.4317 0.4594 4.9512 5.1141 0.1629 
28 Training -0.1160 -7.1614 0 5.9066 5.7569 -0.1497 
29 Training 0.2567 -9.2480 0.4240 4.8247 4.6568 -0.1679 
30 Training 4.31E-04 -9.9327 0 4.8604 5.0362 0.1758 
31 Training -0.2463 -8.5664 0.1395 5.9066 5.7997 -0.1069 

 

Figure 1 presents the correlation between predicted and observed pIC50 for anti-Grave's disease, demonstrating that the 

QSAR model created connected the properties/descriptors of the compounds to their bioactivities and that the predicted 

pIC50 closely matched the experimental pIC50. The viability of the created 2D-QSAR model to forecast the anti-Graves' 

disease activity of the selected compounds, as shown in Equation 4, is further demonstrated by statistical analyses, where 

the correlation coefficient (𝑅2) was 0.7427, indicating an ideal fit. Because the value obtained is greater than 0.6, the cross-

validation (𝑄2) was 0.631, demonstrating its adequacy and unwavering quality. Additionally, the adjusted correlation 

coefficient (𝑅𝑎𝑑𝑗
2 ), which is greater than 0.6 and was assessed to be 0.6821, was presented in Table III and was believed to 

have increased the QSAR model's predicting power. 
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Figure 1. Dissipate plot of the predicted vs. the observed data of the compound’s activities studied. 

 

Using DTC Laboratory y-Randomization v1.2.jar, we tested the 2D-QSAR model quality by running fifty randomizations. 

A randomization test was utilized to evaluate the heartiness of the laid-out model to create descriptors correlation 

remarkably, and the bioactivities are not by chance. The observations are randomly jumbled 50 times to achieve this, with 

the description columns remaining constant but the pIC50 response column changing. Fifty models were produced, with 

averages for 𝑅, 𝑅2, and 𝑄2 of 0.4077, 0.1867, and -0.4094, respectively. The results of the Y-randomization test demonstrate 

that the (𝑐𝑅𝑝
2 = 0.6543) criteria are superior to 0.5. This outcome demonstrates once more that the models found to be accurate 

were not accidental, as presented in Table V. 

 
Table V. Y-randomization test for internal validation. 

Model R R2 Q2 

Original 0.861795 0.74269 0.630991 
Random 1 0.303955 0.092389 -0.53349 

Random 2 0.516371 0.266638 -0.34173 

Random 3 0.402423 0.161944 -0.37193 
Random 4 0.345926 0.119665 -0.62806 

Random 5 0.310137 0.096185 -0.53798 
Random 6 0.52344 0.27399 -0.05076 
Random 7 0.544173 0.296124 -0.33095 
Random 8 0.287046 0.082395 -0.49842 

Random 9 0.409931 0.168044 -0.26561 

Random 10 0.545125 0.297162 -0.10238 
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Random 11 0.375686 0.14114 -0.41133 

Random 12 0.559232 0.31274 -0.02339 

Random 13 0.206225 0.042529 -0.80896 
Random 14 0.656787 0.431369 0.058635 

Random 15 0.184433 0.034016 -0.87495 
Random 16 0.447799 0.200524 -0.58343 

Random 17 0.193133 0.0373 -1.23986 
Random 18 0.428983 0.184026 -0.26058 
Random 19 0.570472 0.325439 -0.0431 
Random 20 0.228434 0.052182 -0.59228 
Random 21 0.358028 0.128184 -0.29949 
Random 22 0.46596 0.217119 -0.09874 
Random 23 0.625711 0.391515 -0.07724 
Random 24 0.193385 0.037398 -0.66117 
Random 25 0.368779 0.135998 -0.56021 
Random 26 0.407655 0.166182 -0.52856 
Random 27 0.395517 0.156434 -0.62992 
Random 28 0.46943 0.220365 -0.1958 
Random 29 0.221929 0.049253 -0.97539 
Random 30 0.473742 0.224431 -0.43636 
Random 31 0.427194 0.182494 -0.39926 
Random 32 0.319408 0.102022 -0.68011 
Random 33 0.53718 0.288563 -0.22306 
Random 34 0.333999 0.111556 -0.49291 
Random 35 0.59752 0.35703 -0.12432 
Random 36 0.655869 0.430164 0.053495 
Random 37 0.442864 0.196128 -0.23406 
Random 38 0.446774 0.199607 -0.43519 
Random 39 0.511154 0.261278 -0.45163 
Random 40 0.47584 0.226424 -0.21942 
Random 41 0.282806 0.079979 -0.3976 
Random 42 0.440142 0.193725 -0.2743 
Random 43 0.47035 0.221229 -0.24436 
Random 44 0.14293 0.020429 -0.61554 
Random 45 0.349206 0.121945 -0.40522 
Random 46 0.122552 0.015019 -0.90906 
Random 47 0.518546 0.26889 -0.27162 
Random 48 0.371641 0.138117 -0.3975 
Random 49 0.182729 0.03339 -1.00067 
Random 50 0.736395 0.542277 0.156491 

Random Models Parameters  
Average R = 0.407698938 
Average R2 = 0.186658893 
Average Q2 = -0.409385742 
cRp2 =  0.654323791 

 

William's plots (Figure 2A) of the developed 2D-QSAR model are demonstrated. The cut-off leverage (ℎ∗) was found to be 

0.682. According to their leverage values, none of the compounds fall beyond the defined range of applicability domain of 

the developed QSAR model (ℎ𝑖 > ℎ∗). Therefore, there are no structural outliers. Four influential outliers are from the test 

sets, as their standardized residual values are outside the ±2.5 range. Hence, these compounds impact the model capability. 

Because the training sets lacked any outliers, the QSAR model of those datasets was correctly predicted. Using this 2D-

QSAR model, we can create new drugs with increased anti-Graves' disease bioactivity. 

The Insubria graph (Figure 2B) plots the leverages for the prediction set versus predicted values. Based on the structural 

resemblance to the training compounds (leverage value) and the anticipated value of pIC50, we could identify the model's 

accurate prediction zone with the aid of this plot. When both conditions and ℎ ℎ∗⁄  and 𝑌𝑚𝑖𝑛 < 𝑌𝑝𝑟𝑒𝑑 < 𝑌𝑚𝑎𝑥  were met, we 

took it as given that the results were accurate (𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥  are the minimal and the maximal value of pIC50 in the training 

set). About 56% of the test set's compounds, we discovered, fell within the model's applicability domain. Compounds 11, 

22, and 24 were identified as outside the domain. The predictions are less trustworthy because the pIC50 values for these 

compounds have been extrapolated. 
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Figure 2. (A) Display of Williams plot using data predicted by the model and (B) Insubria plot for divided set model (Molecules out of 

applicability domain have been shown with their serial numbers). 

 

The virtual screening was carried out with the 31 compounds as potential inhibitors of GD (PDB ID 2XPG and 4QT5) and 

PTPN22 (PDB ID 3BRH). Table VI shows the binding affinities, estimated inhibition constant (𝐾𝑖) and ligand efficiency 

(𝐿𝐸) of the ligands and the two standard drugs used in our work. The strongest docking between ligands and proteins could 

be seen in the docking simulations with the lowest binding affinities and estimated inhibition constant. Following the 

AutoDock Vina results, out of 31 datasets used, Compound 4 exhibited the lowest binding affinity with the main GD (PDB 

ID 2XPG and 4QT5) receptors (-9.3 and -7.5 kcal/mol) catalytic sites, followed by Compound 16 (-9.5 and -7.3 kcal/mol), 

Compound 18 (-10.1 and -8.0 kcal/mol), and Compound 30 (-9.5 and -7.3 kcal/mol). The four compounds have the highest 

docking scores compared to the standard methimazole (-3.6 and -3.3 kcal/mol) and propylthiouracil (-5.6 and -4.7 

kcal/mol). However, every docked compound scored better than the most recent GD inhibitor. The docking score (affinity) 

between the catalytic site of PTPN22 and the 31 compounds used in this dataset ranged from -5.8 kcal/mol for Compound 

7 to -9.1 kcal/mol for Compound 30, as presented in Table VI. Every substance in this dataset had Vina docking scores 

higher than the industry benchmarks methimazole and propylthiouracil. 

 
Table VI. Docking results of the selected dataset with different GD and PTPN22 proteins. 

Cpd No. PUBCHEM_CID 2XPG Estimated Ki LE 4QT5 Estimated Ki LE 3BRH Estimated Ki LE 

1 647501 -7.6 2.69 uM -0.36 -5.9 47.35 uM -0.28 -7.4 3.77 uM -0.35 
2 654089 -7.2 5.28 uM -0.42 -5.7 66.36 uM -0.34 -8.2 975.81 nM -0.48 
3 573747 -6.6 14.53 uM -0.33 -5.4 0.11 mM -0.27 -6.6 14.53 uM -0.33 
4 3239469 -9.1 213.63 nM -0.27 -7.5 3.18 uM -0.22 -8.7 419.63 nM -0.26 
5 66541 -6.3 24.1 uM -0.45 -4.8 0.3 mM -0.34 -6 39.99 uM -0.43 
6 460747 -6.4 20.36 uM -0.43 -5.1 0.18 mM -0.34 -6.3 24.1 uM -0.42 
7 1973720 -5.7 66.36 uM -0.3 -4.6 0.42 mM -0.24 -5.8 56.05 uM -0.31 
8 2012947 -8.5 588.12 nM -0.3 -7.1 6.25 uM -0.25 -8 1.37 uM -0.29 
9 3116376 -8.5 588.12 nM -0.28 -6.7 12.27 uM -0.22 -8.7 419.63 nM -0.29 
10 1714876 -8.4 696.25 nM -0.25 -7 7.4 uM -0.21 -8.2 975.81 nM -0.24 
11 86261486 -8 1.37 uM -0.31 -6.2 28.53 uM -0.24 -7.5 3.18 uM -0.29 
12 1334608 -8.3 824.26 nM -0.24 -6.8 10.37 uM -0.2 -7.9 1.62 uM -0.23 
13 9564046 -8.1 1.16 uM -0.28 -7.1 6.25 uM -0.24 -7.9 1.62 uM -0.27 
14 9595043 -9.2 180.45 nM -0.29 -7.5 3.18 uM -0.23 -7.8 1.92 uM -0.24 
15 5995173 -9.3 152.43 nM -0.24 -7.5 3.18 uM -0.2 -7.8 1.92 uM -0.21 
16 2545524 -9.5 108.76 nM -0.25 -7.3 4.46 uM -0.19 -8.8 354.46 nM -0.23 
17 2975144 -8.2 975.81 nM -0.22 -6.4 20.36 uM -0.17 -7.9 1.62 uM -0.21 
18 2229326 -10.1 39.51 nM -0.3 -8.0 1.37 uM -0.24 -8.5 588.12 nM -0.25 
19 5756371 -8.2 975.81 nM -0.28 -6.9 8.76 uM -0.24 -8.3 824.26 nM -0.29 
20 3164059 -8.3 824.26 nM -0.36 -6.7 12.27 uM -0.29 -7.3 4.46 uM -0.32 
21 7217786 -6.4 20.36 uM -0.38 -5.5 93 uM -0.32 -6.4 20.36 uM -0.38 
22 9595032 -8.7 419.63 nM -0.32 -6.9 8.76 uM -0.26 -8.4 696.25 nM -0.31 
23 25250764 -9 252.91 nM -0.26 -7.3 4.46 uM -0.21 -8.2 975.81 nM -0.23 
24 6104167 -8.3 824.26 nM -0.27 -7.1 6.25 uM -0.23 -8.6 496.78 nM -0.28 
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25 1587127 -9.1 213.63 nM -0.31 -6.9 8.76 uM -0.24 -8.5 588.12 nM -0.29 
26 1516220 -8.1 1.16 nM -0.25 -6.4 20.36 uM -0.2 -7.8 1.92 uM -0.24 
27 8853383 -8.5 588.12 nM -0.27 -7.5 3.18 uM -0.24 -8.8 354.46 nM -0.28 
28 2354598 -7.9 1.62 uM -0.3 -7.1 6.25 uM -0.27 -8.0 1.37 uM -0.31 
29 2867365 -8.6 496.78 nM -0.25 -7.1 6.25 uM -0.21 -8.1 1.16 uM -0.24 
30 1889464 -9.5 108.76 nM -0.29 -7.3 4.46 uM -0.22 -9.1 213.63 nM -0.28 
31 2545467 -9 252.91 nM -0.26 -6.5 17.2 uM -0.19 -8.0 1.37 uM -0.24 
Methimazole 1349907 -3.6 2.3 mM -0.51 -3.3 3.81 mM -0.47 -3.8 1.64 mM -0.54 
Propylthiouracil 657298 -5.6 78.56 uM -0.51 -4.7 0.36 mM -0.43 -5.3 0.13 mM -0.48 

Note: 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐾𝑖 = 𝑒𝑥𝑝
(

∆𝐺

𝑅𝑇
)
, 𝐿𝐸 =  −∆𝐺

𝐻𝐴⁄ , where 𝛥𝐺 = binding affinity, HA = the number of heavy atoms. R (gas constant) = 1.98719 

cal/mol/K and T (temperature) = 298.15 K 

 

Table VII revealed the types of non-covalent interactions, especially van der Waals, conventional hydrogen bonds, and 

hydrophobic interactions, convoluted between the best four compounds and the two standard compounds and the residues 

of the catalytic site of PTPN22 target protein have been studied since they sort out the shape and adjustment of the docking 

compounds. Figure 3 shows the receptors' interactions and interfacing residues with compound 30 and the two standard 

drugs in the PTPN22 target protein, respectively. The contingent of cooperation and perception of the docking consequences 

of compounds and bond distances are provided. With the PTPN22 target protein, compound 30 formed conventional 

hydrogen bonds with three different residues: Thr46, Tyr66, and Ser35, which show solid and stable interactions between 

this ligand and the catalytic site of the PTPN22 receptor. However, one amino acid is involved in pi-pi T-shaped interaction, 

while two amino acids, Lys39 and Lys32, are associated with pi-alkyl connection with the same compound, as outlined in 

Figure 3A. Each of the standard drugs interacts with either both of the catalytic residues (Tyr38, Tyr44, and Thr46) or at least 

one of them, as shown in Figures 3B and 3C, which show the non-covalent interactions of the standard drugs that AutoDock 

Vina detects. Methimazole is observed to show two conventional hydrogen bonds with Tyr33 and Tyr44, one carbon-

hydrogen bond with Thr46, and one pi-alkyl (hydrophobic) interaction with Lys39 (Figure 3B). Propylthiouracil is observed 

to show one conventional hydrogen bond with Tyr38 and also displays one alkyl and pi–alkyl hydrophobic interaction with 

Lys39 and Leu64, respectively (Figure 3C). 

 
Table VII. Docking interaction analysis of the top four compounds and the standard drugs. 

S/N Hydrogen Bonds 
Pi-donor 

HB 
Carbon-

HB 
Hydrophobic Van der Waals 

4 Glu50 (4.50 Å) Thr46 
(4.71 and 
5.38 Å) 

Nil Lys42 (6.33 Å), Lys39 (5.68, 
5.33, and 5.90 Å) 

Pro54, Tyr44, Tyr38, Ser35, 
Tyr66, Pro270, Leu64, 
Asp62, Lys61, and Ser271 

16 Lys42 (4.40 Å), Ser271 
(3.60 Å) 

Nil Nil Leu64 (5.61 Å), Lys39 (5.41 
and 6.44 Å), Leu64 (5.25 Å), 
Lys42 (4.49 Å) 

Lys61, Glu50, Asp62, 
Pro270, Ser35, Thr36, Tyr38, 
Tyr66, Thr46, Tyr44, Pro45 

18 Lys39 (4.65 Å), Asp62 
(5.14 Å), Tyr38 (5.82 Å), 
Tyr44(5.28 Å) 

Nil Pro45 
(4.52 Å) 

Lys39 (4.43, 5.31, 5.61 Å) Thr36, Ser35, Tyr66, Thr43, 
Lys42, Thr46, Leu64, and 
Lys61 

30 Thr46 (3.20 Å), Tyr66 
(5.90 Å), Ser35 (2.26 Å)  

Nil Nil Tyr (6.19 Å), Lys39 (6.05 and 
6.70 Å), Lys32 (7.04 Å) 

Tyr38, Tyr44, Thr36, Phe28, 
Gln274, Arg266, Ser271, 
Asp62, Glu50, Leu64, and 
Pro270 

Methimazole Tyr38 (5.48 Å), Tyr44 
(4.59 Å) 

Nil Thr46 
(4.73 Å) 

Lys39 (5.52 Å) Pro45, Lys42, Thr43, and 
Tyr66 

Propylthiouracil Tyr38 (6.27 Å) Nil Nil Lys39 (5.58 Å), Leu64 (4.46 
Å) 

Pro45, Lys42, Thr43, Tyr44, 
Tyr66, Asp62, and Thr46 
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Figure 3. 2D structure and interaction after docking simulations of (A) Compound 30, (B) methimazole, and (C) propylthiouracil with 

PTPN22. 
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Figure 4 summarizes these evaluations throughout the last 10 ns of the MD simulation. Figure 4A shows the simulation 

trajectory of the Compound 30 complex form, which showed an average root mean square deviation (RMSD) value of 1.18 

Å, while the methimazole and propylthiouracil complexes form exhibited an average RMSD value of 1.01 and 1.19 Å, 

respectively. According to recent research34, MD simulations interactions with RMSD values of 2.0 Å, 2.0 Å to 3.0 Å, and 

≥3.0 Å are regarded as good, acceptable, and bad solutions, respectively. This result demonstrated that the protein model is 

more stable when complexed with all the ligands since the average RMSD values are less than 2.0 Å.  

The radius of gyration (Rg) values provide a scratchy measurement of the compactness of a structure. In the radius of the 

gyration simulation trajectory, an increase in compactness in the Compound 30 and propylthiouracil complexes form (19.83 

Å) was observed compared to the methimazole form (19.79 Å) (Figure 4B), which might be due to the increase in interactions 

between the compounds and the PTPN22 receptor. Root mean square fluctuation (RMSF) examination of residues is 

displayed in Figure 4C. Negligible fluctuations were observed during the simulation, except for the protein's terminal and 

loop regions. The majority of the variations were in the 3.0 Å range. This demonstrated the simulated system's stability. 

Figure 4D presents the solvent-accessible surface area (SASA) of the PTPN22 protein and its complexes. In MD simulations, 

SASA is yet another crucial parameter to investigate the stability of proteins and their complexes. As can be seen from the 

data, all systems' SASA fluctuated significantly throughout the simulation. For instance, it was discovered that the average 

SASA of the complexes of Compound 30, methimazole, and propylthiouracil were 15940.85, 15968.11, and 15843.45 Å2, 

respectively. For all of the complexes, the results seem to be close. The information supports the stability of every system 

under physiological circumstances. 

 

 
A      B 

 
C      D 

Figure 4. (A) Protein-ligand RMSD, (B) protein-ligand RG, (C) protein RMSF, and (D) protein-ligand SASA of Compound 30, 

methimazole, and propylthiouracil of the simulated system during the MD simulation. 
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All complexes' calculated free binding energies were computed using the Molecular Mechanics/Generalized Born surface 

area (MM/GBSA) method to evaluate the fiery part of the relationship of ligands to the PTPN22 receptor. Table VIII lists 

the calculated free binding energies and individual energy terms for each compound-PTPN22 receptor. It is shown that 

MM/GBSA prediction on the affinity of Compound 30 (∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = -76.6688 ± 0.4826 (kcal/mol)) was highly lower than 

the observed data (∆𝐺𝐸𝑥𝑝 = −675.124 kcal/mol, ΔG = -RT ln IC50, where IC50 = 13.791 uM, R was Boltzmann gas constant (= 

1.987 cal/mol/K), and T (room temperature) is 298.15 K). Moreover, the binding free energies of PTPN22 protein with 

standard drugs were less negative (∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = -16.6701 ± 0.4695 (kcal/mol) and -25.5771 ± 0.57 (kcal/mol)) than that of 

Compound 30, which showed that Compound 30 bonded more tightly to PTPN22 protein than the standard drugs. In the 

complex of Compound 30, the (∆𝐸𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + ∆𝐺𝑆𝑜𝑙) and ∆𝐸𝑉𝐷𝑊  were more negative than those of methimazole and 

propylthiouracil. The MM/GBSA prediction showed that conventional hydrogen bonds, van der Waals, and hydrophobic 

interactions were the principal factors in the recognition of Compound 30 to PTPN22 protein structure. 

 
Table VIII. MM/GBSA score of Compounds 30, methimazole, and propylthiouracil complexes. 

Compound 30 Complex Protein Ligand 

Av. BOND:  475.4699 466.7536 8.8136 
Av. ANGLE:  1,188.7587 1,174.7052 7.9732 
Av. DIHED:  2,859.7211 2,820.3503 23.0082 
Av. IMPRP:  62.5692 62.6362 0.1402 
Av. ELECT:  -9,155.9389 -9,032.3544 -55.9464 
Av. VDW:  -1,162.5375 -1,166.2791 34.9108 

ΔE(internal) = 22.1385 
ΔE(electrostatic) + ΔG(sol) = -67.6381 
ΔE(VDW) = -31.1692 
ΔG binding = -76.6688 ± 0.4826 (kcal/mol) 

Methimazole Complex Protein Ligand 

Av. BOND:  471.3764 470.1995 1.2604 
Av. ANGLE:  1,180.8875 1,177.2634 1.7348 
Av. DIHED:  2,835.6789 2,822.0652 0.1663 
Av. IMPRP:  64.1066 63.5888 0.0188 
Av. ELECT:  -9,078.0964 -9,044.3005 -0.8848 
Av. VDW:  -1,167.5483 -1,167.8174 -0.2198 

ΔE(internal) = 15.7522 
ΔE(electrostatic) + ΔG(sol) = -32.9111 
ΔE(VDW) = 0.4888 
ΔG binding = -16.6701 ± 0.4695 (kcal/mol) 

Propylthiouracil Complex Protein Ligand 

Av. BOND:  471.8295 469.2198 2.2474 
Av. ANGLE:  1,186.3399 1,180.1557 2.9389 
Av. DIHED:  2,819.2303 2,828.4815 1.0813 
Av. IMPRP:  62.6113 63.311 0.0571 
Av. ELECT:  -9,293.833 -9,072.2683 -207.727 

ΔE(internal) = -7.4818 
ΔE(electrostatic) + ΔG(sol) = -13.8377 
ΔE(VDW): -4.2576 
ΔG binding = -25.5771 ± 0.57 (kcal/mol) 

 

However, there were some interaction changes in all the complexes and some insignificant conformational changes in 

different regions. Figure 5 shows a 2D visualization of the interactions between Compound 30 and the two standard drugs 

after a 10 ns simulation. Compound 30 formed three conventional hydrogen bonds with the PTPN22 protein structure in 

the molecular docking study (initial conformation) that were lost during the molecular dynamics’ simulations process. 

Compound 30 rotated to the left and was pointed toward the solvent-accessible region. It is worth mentioning that during 

the simulation, the orientation of one component of the structure in the binding site was maintained. Additionally, despite 

the slight conformational changes, three conventional and one carbon-hydrogen bond between the residues Pro270, Leu64, 

Asp62, and Ile63 were formed, respectively, indicating the significance of these residues in the inhibitory activity of this class 

of PTPN22 protein inhibitors (Figure 5A). The docking of methimazole and propylthiouracil against the PTPN22 receptor 

is presented in Figures 5B and 5C. The MD simulations analysis of the PTPN22 protein with the ligands empowered us to 

distinguish explicit residues Leu64, Pro270, Asp62, Lys39, and Tyr66 within the PTPN22 protein catalytic site play a crucial 

part in ligand binding affinity. Therefore, these properties should be taken into account to improve the biological inhibitory 

activity of Compound 30 against autoimmune diseases (e.g., GD). 
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Figure 5. 2D structure and interaction after MD simulations of (A) Compound 30, (B) methimazole, and (C) propylthiouracil with 

PTPN22 protein. 
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We pinpointed key structural prerequisites for the observed bioactivity through the thorough analysis of the 2D-QSAR, 

molecular docking analysis, and molecular dynamics simulations. Compounds 4 and 30 were used as a template to modify 

their molecular structure, and fifteen new compounds were designed. These molecules have been optimized, and 

previously generated 2D-QSAR has predicted their activities. These compounds predicted pIC50 and chemical makeup are 

provided in Table IX and Figure 6, respectively. Most of the designed compounds have higher pIC50 values than the 

template structures. Docking simulations showed that some predicted compounds are more stable than the template 

structures. The results of the docking studies are given in Table IX, and the binding interactions of the best four compounds 

(S12, S13, S14, and S15) with the PTPN22 receptor are presented in Figure 7. 

 
Table IX. Newly designed molecules and their predicted pIC50 and molecular docking results. 

Name ATSC7c VE3_Dt SdssC maxssCH2 Pred. pIC50 Affinity (kcal/mol) EST. Ki LE 

S1 -0.0043 -6.592 -2.5612 0 5.4102 -8.4 696.25 nM -0.28 
S15 0.1298 -8.6861 -2.4735 0 5.1608 -9.5 108.76 nM -0.29 
S2 0.0112 -9.7229 -2.7237 0.7721 4.2123 -8.7 419.63 nM -0.26 
S3 -0.2664 -12.1379 -1.2047 0.8055 4.4728 -8.6 496.78 nM -0.29 
S4 -0.2455 -6.8421 -0.9456 0.852 4.9024 -8.4 696.25 nM -0.28 
S5 -0.0821 -7.6578 0.13968 0.4529 5.4051 -7.6 2.69 uM -0.25 
S7 0.1513 -7.6578 4.3504 0.4509 6.1109 -7.9 1.62 uM -0.26 
S8 0.1335 -14.0568 0.5657 0.5881 4.6522 -9.0 252.91 nM -0.26 
S9 -0.3959 -8.6928 0.8468 0.8428 5.2281 -8.2 975.81 nM -0.23 
S10 0.2937 -6.592 -1.8159 0 5.3592 -8.5 588.12 nM -0.28 
S11 0.2536 -7.8586 -1.7026 0 5.3036 -8.5 588.12 nM -0.27 
S13 0.1371 -7.488 -3.1513 0 5.1174 -9.3 152.43 nM -0.29 
S14 0.2166 -10.8355 -5.0613 0.5440 3.7629 -9.1 213.63 nM -0.26 
S6 -0.0435 -10.6776 0.2332 0.4540 5.1432 -8.0 1.37 uM -0.26 
S12 0.1441 -7.8586 -1.3674 0.4747 4.8992 -9.1 213.63 nM -0.29 
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S4    S5    S6 
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S10    S11    S12 

 
S13    S14    S15 

Figure 6. The physicochemical structure of the designed compounds based on QSAR, molecular docking, and MD simulations. 

 

  
S12       S13 

  
S14       S15 

Figure 7. Illustrations of 2D binding interactions and positioning of designed compounds within the target PTPN22 receptor. 
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The information on the drug-likeness of the compounds utilizing Lipinski's rule of five35 is listed in Table X for all the 

designed compounds and the selected compounds in Table VIII. The gastrointestinal (GI), blood-brain barrier (BBB) 

permeable, and Cytochrome P450s (CYPs) of all the compounds were obtained and are listed in Table XI. Phase I of drug 

biotransformation is important for cytochrome P450s (CYPs). Approximately 95% of the body's drug metabolism is 

mediated by five CYPs (1A2, 2C9, 2C19, 2D6, and 3A4). The data on the BOILED-Egg model resulting from Lipinski's rule 

of five (WLOG) and Veber's rule (TPSA)36 is presented in Figure 8. 

 
Table X. Predicted drug-likeness of the designed and selected compounds based on the Lipinski's rule of five. 

Name MW #H-bond acceptors #H-bond donors MLOGP TPSA 
#Rotatable 

bonds 
Lipinski #violations 

PAINS 
#alerts 

S1 406.39 5 3 1.49 119.05 5 0 0 
S2 462.45 6 4 1.29 144.91 7 0 0 
S3 410.43 4 4 -0.03 122.88 6 0 0 
S4 410.43 4 4 -0.03 122.88 6 0 0 
S5 420.44 5 3 1.01 145.24 6 0 2 
S6 434.47 5 2 1.23 134.38 6 0 2 
S7 404.42 5 3 1.4 107.7 6 0 2 
S8 476.5 6 4 1.32 173.17 8 0 2 
S9 490.53 6 4 1.52 173.17 8 0 2 
S10 422.41 5 3 2.17 156.59 5 0 0 
S11 436.44 5 2 2.39 145.73 5 0 0 
S12 438.46 5 3 1.49 151.14 5 0 0 
S13 450.42 6 4 1.52 184.52 5 0 0 
S14 476.44 7 4 2.21 169.5 7 1 0 
S15 464.45 6 4 1.74 184.52 5 0 0 
4 463.48 7 2 1.33 114.13 6 0 2 
16 527.59 6 2 1.33 129.52 9 0 2 
18 494.99 4 3 4.02 103.88 5 0 1 
30 445.38 7 2 2.36 149.6 6 0 0 

 
Table XI. Predicted the pharmacokinetic properties of the designed and selected compounds. 

S/
N 

GI 
absorption 

BBB 
permeant 

Pgp 
substrate 

CYP1A2 
inhibitor 

CYP2C19 
inhibitor 

CYP2C9 
inhibitor 

CYP2D6 
inhibitor 

CYP3A4 
inhibitor 

log Kp 
(cm/s) 

S1 High No Yes No No No No No -7.33 
S2 Low No Yes No No Yes No Yes -7.45 
S3 Low No Yes No No No No No -7.86 
S4 Low No Yes No No No No No -7.86 

S5 Low No No Yes Yes Yes No Yes -6.86 
S6 Low No No No Yes Yes No Yes -6.81 
S7 High No Yes Yes Yes Yes Yes Yes -6.38 
S8 Low No No Yes Yes Yes No Yes -6.93 
S9 Low No No Yes Yes Yes No No -6.62 
S1
0 

Low No No No No No No No -7.8 

S1
1 

Low No No No No No No No -7.76 

S1
2 

Low No Yes No No No No No -7.92 

S1
3 

Low No No No No No No No -8.27 

S1
4 

Low No Yes No No No No No -8.03 

S1
5 

Low No No No No No No No -8.09 

4 High No Yes No Yes Yes Yes Yes -6.76 
16 High No Yes No Yes Yes Yes Yes -6.76 
18 Low No Yes Yes No Yes No Yes -5.47 
30 Low No No No Yes Yes No Yes -6.88 
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Figure 8. The BOILED-Egg model for the selected ligands. S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, Compound 4, 

Compound 16, Compound 18, and Compound 30 are Molecule 1, 2, 3, to Molecule 19. 

 

CONCLUSION 

We built robust QSAR predictive models based on selected compounds from the PubChem database. According to a 

molecular docking analysis, Compound 30 docked poses with the GD receptors displayed a higher binding affinity and 

significant nonbonding interactions than the reference drugs. The application of anti-Graves’ disease drugs as anticipated 

inhibitors of PTPN22, THRA1, and ERBA2, which may lessen the thyroid receptor, is suggested by these blind molecular 

docking studies as a possible strategy. The Compound 30 and corresponding target receptors could form stable complexes, 

according to the MD simulation and MM/GBSA calculation. According to the bioactivity study, Compound 30 has superior 

pharmacokinetic and pharmacodynamic characteristics to standard drugs. The scientific value of additional research on 

Compound 30 and designed compounds would be significant. 
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