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INTRODUCTION 

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 

Wuhan, China, in December 2019  and rapidly spread globally. This pandemic has resulted in millions of infections and 

deaths worldwide. SARS-CoV-2 is an enveloped, positive-sense single-stranded RNA virus belonging to the 

Betacoronavirus genus1,2. Its large genome encodes both structural and non-structural proteins, including the spike (S) 

protein, which plays a crucial role in viral entry into host cells3. 

The S-protein is a prime target for therapeutic intervention, as it is essential for viral attachment and entry. Neutralizing 

monoclonal antibodies (mAbs) that bind to the S-protein can effectively block viral infection4. While significant efforts have 

been directed towards vaccine development and antiviral therapies, the potential of mAbs as a therapeutic strategy against 

COVID-19 has gained increasing attention5. Monoclonal antibodies can offer several advantages, including rapid onset of 

action, high specificity, and the potential to target multiple viral epitopes. However, their therapeutic use is often limited by 

factors such as cost, production complexity, and potential for immunogenicity6. 
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 Abstract 

The emergence of COVID-19 in December 2019 spurred a global 
effort to develop effective medical interventions. Therapeutic 
monoclonal antibodies (mAbs) have emerged as a promising 
strategy to combat the SARS-CoV-2 virus. Several mAbs 
targeting the receptor-binding domain (RBD) of the SARS-CoV-
2 spike protein have received Emergency Use Authorization 
(EUA) for treating mild to moderate COVID-19. Additionally, 
human mAbs and hyperimmune plasma derived from 
recovered COVID-19 patients have been explored as potential 
therapeutic options. This review delves into the potential of 
mAbs for the diagnosis and treatment of COVID-19 infection. 
We discuss the mechanisms of action of mAbs, as well as their 
advantages and limitations. Furthermore, we explore the 
ongoing research and development efforts to optimize mAb-
based therapies for COVID-19. 
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Understanding the complex interplay between the virus and the host immune response is crucial for developing effective 

therapeutic strategies7. In the early stages of COVID-19 infection, antiviral therapies like remdesivir can be beneficial in 

reducing viral replication. However, as the disease progresses, the host immune response can contribute to severe disease 

outcomes8,9. In such cases, immunomodulatory therapies, such as corticosteroids and interleukin-6 inhibitors, can help 

mitigate the inflammatory response10. 

The COVID-19 pandemic has underscored the urgent need for innovative therapeutic approaches to combat this highly 

contagious disease11. Monoclonal antibodies have emerged as a promising therapeutic strategy due to their ability to target 

specific viral proteins and neutralize the virus. Given the ongoing threat of COVID-19 and the emergence of new variants, 

continued research into the development of novel therapeutic strategies, including mAb-based therapies, is essential12,13. 

This review will explore the development and clinical application of various mAb therapies for COVID-19, providing an 

overview of their mechanisms of action, efficacy, and safety profiles. 

 

MONOCLONAL ANTIBODIES 

Monoclonal antibodies are laboratory-produced antibodies designed to mimic the immune system's ability to fight off 

harmful antigens. They are typically derived from either convalescent human B-cell lymphocytes or humanized mice. By 

cloning a single antibody, scientists can produce a large quantity of identical antibodies with high specificity for a particular 

target antigen14,15. Monoclonal antibody therapies have emerged as a promising approach to treat COVID-19. By targeting 

specific viral proteins, these therapies can help prevent severe illness, reduce viral load, and mitigate symptoms13,16. 

However, it's important to note that mAb therapy is not a substitute for vaccination. Vaccination remains crucial for building 

herd immunity and preventing the spread of the virus17. There are four primary methods for producing mAbs, each with 

distinct characteristics. 

Murine Antibodies 

Murine antibodies are derived from mouse proteins and are identified by names ending in "-omab"18. For instance, 

muromonab, the mAb anti-CD3 antibody used as immunosuppressive therapy in kidney, heart, and liver transplant 

patients19. 

Chimeric Antibodies 

Chimeric antibodies are a class of monoclonal antibodies that combine human and mouse antibody sequences. This hybrid 

approach aims to reduce immunogenicity while maintaining therapeutic efficacy20. Chimeric antibodies are named with 

the suffix "-ximab"18. For instance, infliximab is a chimeric antibody approved for the treatment of various inflammatory 

conditions, including rheumatoid arthritis, inflammatory bowel disease, and ankylosing spondylitis21. 

Humanized Antibodies 

Humanized antibodies are a class of therapeutic antibodies that combine the specificity of mouse antibodies with the safety 

profile of human antibodies. These antibodies are engineered to have a human-like framework, reducing the risk of 

immunogenicity and improving their therapeutic potential20. The names of many humanized antibody drugs end in "-

zumab" 18. For instance, trastuzumab is a well-known humanized monoclonal antibody used to treat certain types of breast, 

stomach, and gastroesophageal junction cancers22. 

Human Antibodies 

Human antibodies, named with the suffix “-umab”18, are therapeutic proteins derived from human immune cells. These 

antibodies are engineered to bind specifically to target molecules involved in disease processes20. Adalimumab, a well-

known example, is a monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), a key inflammatory cytokine. 

This targeted approach offers several advantages, including reduced immunogenicity and increased efficacy compared to 

traditional antibody-based therapies23. 
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ANTI-SARS-COV-2 MONOCLONAL ANTIBODIES 

The SARS-CoV-2 genome encodes four major structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid 

(N). Additionally, several non-structural and accessory proteins are also expressed24. The S-protein, composed of S1 and S2 

subunits, plays a crucial role in viral entry. The S1 subunit binds to the human angiotensin-converting enzyme 2 (ACE2) 

receptor, facilitating viral attachment to host cells. Subsequently, the S2 subunit undergoes conformational changes, 

triggering membrane fusion and viral entry25-27. 

Anti-SARS-CoV-2 mAbs targeting S-protein have demonstrated clinical efficacy in managing SARS-CoV-2 infections. These 

mAbs have been successfully used for post-exposure prophylaxis in individuals exposed to the virus in residential settings. 

Additionally, they have been employed in specialist and home care settings during outbreaks28. Furthermore, pre-exposure 

prophylaxis with certain anti-SARS-CoV-2 mAbs has been shown to significantly reduce the risk of infection29. 

The development of mAbs has emerged as a promising strategy for the diagnosis and treatment of COVID-19. Several 

pharmaceutical companies, including Celltrion, AstraZeneca, and Regeneron, have actively pursued the development of 

mAbs targeting the SARS-CoV-2 virus. The U.S. Food and Drug Administration (FDA) has granted emergency use 

authorization (EUA) to several mAb therapies, such as bamlanivimab, a combination therapy of bamlanivimab and 

etesevimab, casirivimab and imdevimab, and sotrovimab, for the treatment of mild to moderate COVID-19 in high-risk 

individuals30. While mAbs have shown promise in combating COVID-19, the emergence of SARS-CoV-2 variants with 

mutations that reduce susceptibility to these therapies poses a significant challenge. Additionally, the development of mAb 

therapies for other viral diseases, such as Ebola virus disease, has demonstrated the potential of this approach in addressing 

infectious diseases31. 

Bamlanivimab 

Bamlanivimab, the mAb specifically designed to block the SARS-CoV-2 spike protein from binding to the human ACE2 

receptor, was granted EUA by the FDA on November 9, 2020, for the treatment of mild to moderate COVID-19 in high-risk 

adult and pediatric patients32. Administered as a single 700 mg infusion, bamlanivimab was the first mAb approved for 

COVID-19 treatment. However, subsequent studies revealed limited efficacy in reducing viral load. Consequently, the FDA 

revoked the EUA for bamlanivimab monotherapy on April 16, 2021, citing the emergence of SARS-CoV-2 variants resistant 

to this therapy (Figure 1)33. 

Casirivimab and Imdevimab Combination 

The R10933-10987-COV-2067 Phase III trial evaluated the efficacy of casirivimab and imdevimab in treating mild to 

moderate COVID-19 infection34,35. Following EUA by the FDA on November 21, 2020, this antibody cocktail, marketed as 

Regeneron's REGN-COV2, was administered via intravenous infusion or subcutaneous injection. The treatment involves a 

combination of 600 mg casirivimab and 600 mg imdevimab, targeting non-overlapping epitopes of the SARS-CoV-2 spike 

protein36. However, due to the emergence of the Omicron variant, which exhibits reduced susceptibility to these antibodies, 

the distribution of casirivimab and imdevimab in the United States has been suspended. Individuals infected with the 

Omicron variant are unlikely to benefit from this treatment37. 

The clinical studies are evaluating the efficacy of REGN-COV2 in several populations. Firstly, the drug is being tested in 

adolescents aged 12 and older to assess its ability to alleviate COVID-19 symptoms. Secondly, its effectiveness in reducing 

viral load in children under 18 years of age is being explored. Additionally, the study is comparing the efficacy of REGN-

COV2 to placebo in hospitalized patients with mild to moderate COVID-19, focusing on factors such as survival rates and 

the need for mechanical ventilation38,39. Notably, patients treated with the cocktail did not require hospitalization due to 

COVID-19 within a 41-day observation period40. 

REGN-COV2 has shown significant promise in combating COVID-19. Clinical trials have demonstrated a 70% reduction in 

hospitalization and mortality rates among high-risk individuals. Additionally, when administered to individuals exposed 

to the virus, REGN-COV2 can reduce the risk of symptomatic infection by 80%13, as shown in Figure 1. Notably, individuals 

with no pre-existing SARS-CoV-2 antibodies experienced the greatest clinical benefit. 
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Bamlanivimab and Etesevimab Combination 

Bamlanivimab and etesevimab, a combination of monoclonal antibodies, target multiple epitopes on the SARS-CoV-2 spike 

protein. This dual-antibody approach aims to neutralize the virus and prevent its entry into human cells41. On February 9, 

2021, the FDA granted EUA for this combination therapy to treat mild to moderate COVID-19 in non-hospitalized pediatric 

patients. By binding to the receptor-binding domain of the spike protein, these antibodies effectively block viral attachment 

and entry into host cells30. 

Initially, a combination therapy of bamlanivimab (700 mg) and etesevimab (1400 mg) was administered intravenously to 

individuals in regions with low levels of SARS-CoV-2 mutations. However, official guidelines advised against COVID-19 

vaccination within three months of receiving this treatment42. A recent phase I clinical trial demonstrated a 70% reduction 

in COVID-19-related hospitalizations among patients who received bamlanivimab and etesevimab compared to placebo43. 

The distribution of bamlanivimab and etesevimab was temporarily suspended in the United States due to the emergence 

of the Omicron variant, which exhibits reduced susceptibility to these monoclonal antibodies. As a result, individuals 

infected with the Omicron variant are unlikely to benefit from this treatment44. The product's availability was reinstated as 

the prevalence of the Gamma and Beta variants declined to less than 5%. The US FDA and the European Medicines Agency 

(EMA) have recommended the use of monoclonal antibody (mAb) combinations, such as casirivimab and imdevimab 

(REGN-CoV-2) as well as bamlanivimab and etesevimab, for outpatients at high risk of severe COVID-19 who do not 

require supplemental oxygen therapy (Figure 1)45. 

Sotrovimab 

Sotrovimab, the mAb initially discovered in a SARS-CoV survivor in 2003, targets a conserved epitope on the SARS-CoV-2 

spike protein's RBD. It received EUA from the FDA in May 2021 for the treatment of mild-to-moderate COVID-19 in high-

risk individuals46. Administered as a single 500 mg intravenous infusion, sotrovimab has demonstrated a significant 

reduction in hospitalizations and deaths compared to placebo. In a clinical trial involving 583 participants, only 1% of those 

treated with sotrovimab required hospitalization or died within 29 days, compared to 7% in the placebo group. This 

translates to a 6% absolute reduction and an 85% relative reduction in severe outcomes (Figure 1). While intravenous 

administration is the current standard, intramuscular formulations are under clinical investigation47. 

 

 

Figure 1. Administration information for mAbs currently approved for COVID-19 and their side effects. 

 

MONOCLONAL ANTIBODIES INFUSION CRITERIA 

The FDA EUAs for mAbs targeting SARS-CoV-2 outline specific criteria for individuals at increased risk of severe COVID-

19. These criteria were expanded on May 14, 2021, to include individuals diagnosed with other medical conditions who 
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have mild to moderate COVID-19 and are at high risk of progressing to severe disease. However, the use of mAbs is not 

recommended for all COVID-19 patients48,49. 

The administration of mAbs is typically considered for individuals with mild to moderate COVID-19 who are at high risk 

of developing severe disease or hospitalization. This includes patients who have been hospitalized for reasons other than 

COVID-19 or those who meet specific eligibility criteria for outpatient treatment50. Importantly, mAbs are not recommended 

for patients with severe COVID-19 requiring oxygen therapy. To maximize the effectiveness of mAb treatment, it is crucial 

to initiate therapy as early as possible after symptom onset and within 10 days of a positive COVID-19 test51. Early 

administration allows mAbs to effectively neutralize the virus and prevent its replication. Beyond this 10-day window, the 

therapeutic benefit of mAbs diminishes significantly52. 

Patients should be monitored for at least one hour following intravenous or subcutaneous administration of mAb therapy. 

Additionally, current recommendations advise against receiving COVID-19 vaccination within three months of mAb 

treatment. This precautionary measure is implemented to prevent potential interference with vaccine-induced immune 

responses53. The Centers for Disease Control and Prevention (CDC) specifically recommends a 90-day interval between the 

first and second doses of COVID-19 vaccine for individuals who have received mAb therapy54. 

Individuals who are at high risk of severe COVID-19 infection may benefit from therapeutic interventions. This includes 

those who are unvaccinated or have compromised immune systems due to underlying health conditions or 

immunosuppressive medications. Additionally, individuals who have frequent close contact with COVID-19 patients may 

also be considered for therapeutic treatment55. 

High-Risk Conditions 

Individuals 12 years and older are considered high-risk for severe COVID-19 if they meet at least one of the following criteria: 

1. Age: 65 years or older 

2. Obesity: BMI ≥25 kg/m2 for adults, BMI ≥85th percentile for children aged 12-17 

3. Pregnancy 

4. Chronic kidney disease 

5. Diabetes 

6. Hypertension or cardiovascular disease 

7. Chronic lung diseases (e.g., COPD, severe asthma, interstitial lung disease, cystic fibrosis, pulmonary hypertension) 

8. Sickle cell disease 

9. Neurological disorders (e.g., cerebral palsy) 

10. Immunocompromising conditions (e.g., congenital immunodeficiencies, organ transplantation, HIV infection, cancer 

treatment) 

11. Dependency on medical devices (e.g., tracheostomy, gastrostomy, ventilator) 

12. Infants under 12 months 

It's important to note that the presence of multiple high-risk conditions further increases the risk of severe COVID-19 

infection56. 

Mechanism of Action 

The SARS-CoV-2 virus relies on its spike protein to invade human cells. This crucial protein binds to the human ACE2 

receptor, enabling the virus to enter and replicate. Neutralizing mAbs specifically target this spike protein, effectively 

blocking viral entry and preventing infection. By hindering the virus's ability to attach to host cells, these mAbs can 

significantly reduce the severity of COVID-19. The rapid progress in understanding the structure of the SARS-CoV-2 spike 

protein, aided by prior experience with other human viruses, has accelerated the development of effective mAb-based 

therapies4,57. 

To initiate infection, SARS-CoV-2 must first bind to the host cell surface receptor, ACE2, through its S-protein. This 

interaction is facilitated by the transmembrane protease serine 2 (TMPRSS2). Neutralizing mAbs can effectively block this 

initial step by binding to the S-protein, thereby preventing viral entry into the host cell. While most mAbs target the RBD of 

the S-protein, which is crucial for ACE2 binding, some mAbs may target other epitopes on the S-protein to achieve 

https://journal.umpr.ac.id/index.php/bjop
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neutralization. The potency of neutralizing antibodies, as demonstrated by previous studies on SARS-CoV and MERS-CoV, 

is a critical factor in determining their clinical potential58. 

Production 

Monoclonal antibodies are produced by B lymphocytes and are essential tools in various biomedical applications. 

Traditionally, mAbs were generated from murine B cells, limiting their therapeutic potential due to immunogenicity. To 

overcome this challenge, techniques have been developed to produce mAbs in stable cell lines, including those derived from 

human B cells59. By utilizing human B cells, particularly from convalescent COVID-19 patients, researchers have successfully 

generated humanized mAbs that exhibit potent neutralizing activity against SARS-CoV-2. These humanized mAbs hold 

significant promise as therapeutic agents for COVID-19 and other infectious diseases60. 

Traditional production of mAbs in mice involves a multi-step process. First, mice are immunized with a specific antigen, 

such as the SARS-CoV-2 spike protein. Then, their spleen cells, which produce antibodies against the antigen, are fused with 

immortalized myeloma cells using a fusing agent like polyethylene glycol. This fusion creates hybridomas, which are cells 

that can continuously produce the desired mAbs. These hybridomas are then cloned and subcloned to obtain stable cell 

lines that produce a single type of mAb61. Historically, most mAbs produced using this method have been mouse mAbs, 

and many of these have been used in immunotherapy62. 

To generate recombinant human mAbs, the cDNA sequences encoding the variable regions of the heavy and light chains 

of interest must be cloned into expression plasmids. These plasmids typically contain the constant regions of human IgG1 

heavy chain and Ig kappa light chain, along with a signal sequence (such as the interleukin-2 signal sequence) to facilitate 

efficient secretion of the recombinant antibody. Following transfection of mammalian cells, such as HEK-293T cells, with the 

expression plasmids, the recombinant human mAbs are produced and purified using protein A affinity chromatography63. 

Hybridoma technology, introduced in 1975, revolutionized the production of mAbs. By fusing immortalized myeloma cells 

with antibody-producing B cells, researchers can generate stable cell lines that produce large quantities of specific mAbs. 

This technique was employed to develop mouse mAbs targeting specific surface epitopes on the SARS-CoV S-protein. 

Subsequently, through RNA isolation and genetic engineering, these mouse mAbs were humanized or chimerized to 

reduce immunogenicity in humans61. One such humanized mAb, 47D11, demonstrated the ability to neutralize shared 

epitopes between SARS-CoV and SARS-CoV-2 in Vero cell culture, highlighting its potential as a therapeutic agent against 

both viruses64. 

Food & Drug Administration Expansion of Authorization of Two mAbs for the Treatment of COVID-19 in Younger 

Children (including Newborns) 

The U.S. FDA has expanded the EUA for bamlanivimab and etesevimab. Previously authorized for pediatric patients aged 

12 years and older weighing at least 40 kilograms, the EUA has been extended to include younger pediatric patients, 

including newborns. This expanded authorization allows for the combined use of bamlanivimab and etesevimab to treat 

mild-to-moderate COVID-19 in younger pediatric patients who have tested positive for the virus65. Additionally, the 

combination therapy can now be used as a post-exposure prophylaxis to prevent COVID-19 infection in pediatric patients, 

including newborns, who are at high risk of severe disease or death66. 

COVID-19 Prevention 

The COVID-19 pandemic has spurred urgent efforts to develop effective vaccines and therapies. While vaccine 

development typically takes several years, concerted global efforts have accelerated the timeline for COVID-19 vaccines, 

with some vaccines becoming available within a year67. For individuals who cannot receive vaccination or require 

immediate protection, monoclonal antibodies (mAbs) offer a promising alternative. By targeting specific viral proteins, 

mAbs can neutralize the virus and prevent infection or reduce disease severity. Passive administration of mAbs can provide 

immediate protection, especially for high-risk individuals such as the elderly, immunocompromised, and those with 

underlying health conditions68. 

However, it's important to note that mAbs are not a long-term solution and should be used judiciously. As vaccine rollout 

continues, mAbs can play a crucial role in bridging the gap between vaccination and the development of protective 
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immunity. Additionally, mAbs can be particularly beneficial for individuals who have been exposed to the virus but have 

not yet developed symptoms13. 

Adverse Effects 

One potential side effect of mAb therapy is an allergic reaction. These reactions often occur during or shortly after the 

infusion and are typically monitored by healthcare providers. Patients who have received anti-SARS-CoV-2 mAbs have 

experienced a range of hypersensitivity reactions, including anaphylaxis, infusion-related reactions, hives, itching, rashes, 

diarrhea, dizziness, and pruritis69. Additionally, other adverse effects such as fever, chills, nausea, headache, breathing 

difficulties, hypotension, facial swelling, wheezing, and muscle pain have been reported. Moreover, subcutaneous 

administration of casirivimab and imdevimab has been associated with injection site reactions, including bruising and 

redness70. 

 

EMERGING MONOCLONAL ANTIBODIES 

The landscape of mAb therapies for COVID-19 is rapidly evolving. While initial mAbs effectively targeted the original 

SARS-CoV-2 strain, the emergence of new variants has necessitated the development of next-generation mAbs with 

enhanced potency and broader spectrum of activity. These novel mAbs are being designed to neutralize multiple SARS-

CoV-2 variants, including those with mutations that confer resistance to earlier therapies71. Additionally, researchers are 

exploring mAbs that can modulate the host immune response to COVID-19, potentially reducing disease severity and 

improving patient outcomes72. 

Next-Generation 

The development of mAbs targeting conserved regions of the SARS-CoV-2 virus has emerged as a promising strategy to 

combat the ongoing pandemic. By focusing on these regions, researchers aim to develop mAbs that are less susceptible to 

viral mutations and can effectively neutralize a broader range of variants. This approach has the potential to provide long-

lasting protection against future outbreaks and variants of concern73. 

Bispecific and Multispecific 

A promising avenue in the development of SARS-CoV-2 therapeutics involves the use of innovative antibody-based 

strategies. Bispecific and multispecific antibodies, which can simultaneously bind to multiple epitopes on the SARS-CoV-2 

spike protein, offer a compelling approach to neutralize the virus effectively. By targeting multiple epitopes, these antibodies 

can reduce the risk of viral escape mutations, which can render conventional monoclonal antibodies ineffective74. 

Long-Acting 

Many emerging mAbs are being developed with extended half-lives, offering several advantages. By increasing the 

duration of their presence in the bloodstream, these mAbs can provide longer-lasting protection against diseases and reduce 

the frequency of dosing. This is especially beneficial for vulnerable populations, such as the elderly, immunocompromised 

individuals, and those with chronic conditions, who may require ongoing prophylaxis to prevent infections or disease 

progression75. 

Enhanced Delivery Mechanisms 

To enhance patient convenience and compliance, significant efforts are being directed towards developing innovative 

delivery mechanisms for mAbs. By formulating mAbs for intramuscular or subcutaneous injection, healthcare providers 

can administer these therapies outside of hospital settings, reducing the burden on patients and healthcare systems. These 

advancements have the potential to revolutionize the treatment of various diseases, making mAb therapy more accessible 

and effective76. 

Combination Therapies 

Combination therapy with mAbs and antiviral drugs offers a multifaceted approach to combat viral infections. By targeting 

different stages of the viral life cycle, such as viral entry, replication, and release, these therapies can disrupt multiple aspects 
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of viral pathogenesis. This can lead to enhanced antiviral activity and potentially prevent the emergence of drug-resistant 

viral strains77. 

Broad-Spectrum 

Broad-spectrum antibodies offer a promising avenue for combating future coronavirus outbreaks. These antibodies are 

designed to target conserved regions of the viral spike protein, enabling them to neutralize a wide range of coronaviruses, 

including SARS-CoV-2. By developing and deploying broad-spectrum antibodies, we can potentially enhance our 

preparedness for future pandemics and reduce the impact of emerging viral threats14,78. 

Adaptive mAb Platforms 

Adaptive mAb platforms represent a promising approach to counter the rapid evolution of viruses like SARS-CoV-2. By 

utilizing advanced technologies such as phage display and yeast display, these platforms enable the rapid generation of 

new mAbs with enhanced affinity and specificity for emerging viral variants. This accelerated development process can 

significantly reduce the time required to develop effective therapeutics and vaccines79. Furthermore, adaptive mAb 

platforms can be tailored to target specific viral epitopes, making them less susceptible to viral escape mutations. As viral 

pathogens continue to evolve, the development and optimization of adaptive mAb platforms will be crucial for maintaining 

effective public health strategies80. 

Clinical Trials and Regulatory Pathways 

Several mAbs are currently in various stages of clinical trials to evaluate their safety and efficacy against COVID-19. These 

mAbs target specific viral proteins, neutralizing the virus and preventing infection. Regulatory agencies worldwide are 

actively working to expedite the approval process for these promising therapies, recognizing the urgent need for effective 

treatments to combat the ongoing COVID-19 pandemic14,30. 

 

FUTURE OF MONOCLONAL ANTIBODIES 

The potential of mAbs in treating a wide range of diseases is substantial, and ongoing research aims to further optimize their 

use. While mAbs have proven to be effective therapeutic agents, challenges such as complex manufacturing processes, 

immunogenicity, and administration routes remain. To address these limitations, researchers are actively exploring 

innovative strategies to enhance mAb production, improve delivery methods, and reduce adverse immune responses. 

A promising strategy involves the development of antibody-drug conjugates (ADCs), which combine the specificity of 

antibodies with the potency of cytotoxic drugs. ADCs target specific cells, delivering the cytotoxic payload directly to cancer 

cells while minimizing damage to healthy tissues. This targeted approach offers significant advantages over traditional 

chemotherapy, which often leads to systemic toxicity. By selectively eliminating cancer cells, ADCs can reduce adverse side 

effects and improve patient quality of life81,82. 

A recent advancement in mAb therapy involves bispecific antibodies, which possess two distinct antigen-binding sites. This 

unique characteristic enables them to target multiple antigens simultaneously, often directing cytotoxic T cells to eliminate 

malignant cells. While these innovative therapies hold immense promise, their clinical application is currently limited to 

patients who have exhausted standard-of-care treatment options. This limitation arises from rigorous regulatory processes 

and the need for extensive clinical trials to establish safety and efficacy profiles. Although promising data has emerged from 

various studies, large-scale, head-to-head comparisons against standard-of-care treatments are still awaited. Nonetheless, 

the potential of bispecific antibodies to revolutionize cancer therapy is undeniable, potentially rendering more invasive 

treatments like stem cell transplants obsolete. 

 

CONCLUSION 

Monoclonal antibodies have emerged as a promising therapeutic strategy for COVID-19, despite the inherent challenges 

associated with their development and production. Over the past three decades, mAbs have successfully treated various 

diseases, demonstrating their efficacy and ease of administration. Their potential application in COVID-19 treatment is 
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particularly compelling, as they can be derived from recovered patients, providing a rapid and targeted approach. 

Currently, over 70 mAbs are undergoing clinical trials, promising a swift response to future outbreaks. While vaccines offer 

long-term protection, mAbs can provide immediate relief and temporary immunity, especially for vulnerable populations 

like the elderly and immunocompromised individuals. By complementing vaccination strategies, mAbs can offer a 

comprehensive approach to combatting COVID-19 and future pandemics. 
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