Comparative In-Silico Molecular Docking of Silymarin for SARS-CoV-2 Receptor
DOI:
https://doi.org/10.33084/jmd.v2i1.3270Keywords:
Covid-19, Silymarin, Remdesivir, SARS-CoV-2, DockingAbstract
The COVID-19 pandemic has spread worldwide in over 185 countries, with millions of infections and hundreds of thousands of deaths. The current pandemic has made the situation worse, forcing the development of better treatment. In this work, the binding ability of COVID-19 receptors with silymarin has been analyzed using AutoDock 1.4.6. Further, it is compared with the standard drug remdesivir. Silymarin, a potential phytochemical compound obtained from the seeds of the Silybum marianum (milk thistle) plant, has been documented as an antiviral agent against several viruses. So silymarin can also be an effective compound in the treatment of COVID-19. This study aims to determine the binding ability of COVID-19 receptors towards silymarin and further comparative analysis by remdesivir. Drug Discovery Studio version 2021 software was used to analyze ligands and targets. AutoDock 1.4.6 software was used to perform the docking study. Among the various receptors, 5N11 (Human beta1-coronavirus (β1CoV) OC43), 7MJP (SARS-CoV-2 receptor binding domain in complex with neutralizing antibody COVA2-39), 7JMO (SARS-CoV-2 receptor-binding domain in complex with neutralizing antibody COVA2-04) receptors showed the highest binding ability of -8.09, -7.23, -6.96 kcal/mol towards silymarin compared to the standard remdesivir having the docking score of -5.21, -3.76, -2.97 kcal/mol, respectively. By the comparative analysis, silymarin has a better and highest binding ability.
Downloads
References
Bhavana V, Thakor P, Singh SB, Mehra NK. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARSCoV2 pandemic. Life Sci. 2020;261:118336. doi:10.1016/j.lfs.2020.118336
Penman SL, Kiy RT, Jensen RL, Beoku-Betts C, Alfirevic A, Back D, et al. Safety perspectives on presently considered drugs for the treatment of COVID-19. Br J Pharmacol. 2020;177(19):4353-74. doi:10.1111/bph.15204
Mitjà O, Clotet B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob Health. 2020;8(5):e639-40. doi:10.1016/s2214-109x(20)30114-5
Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci. 2020;252:117652. doi:10.1016/j.lfs.2020.117652
Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res.2020;178;104792. doi:10.1016/j.antiviral.2020.104792
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. doi:10.1038/s41467-020-15562-9
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011-33. doi:10.3390/v4061011
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80.e8. doi:10.1016/j.cell.2020.02.052
Ge J, Wang R, Ju B, Zhang Q, Sun J, Chen P, et al. Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nat Commun. 2021;12:250. doi:10.1038/s41467-020-20501-9
Mascolo A, Scavone C, Rafaniello C, De Angelis A, Urbanek K, di Mauro G, et al. The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Front Pharmacol. 2021;12:667254. doi:10.3389/fphar.2021.667254
Liu CH, Jassey A, Hsu HY, Lin LT. Antiviral Activities of Silymarin and Derivatives. Molecules. 2019;24(8):1552. doi:10.3390/molecules24081552
Polyak SJ, Ferenci P, Pawlotsky JM. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology. 2013;57(3):1262-71. doi:10.1002/hep.26179
Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus. Sci Rep. 2021;11(1):21221. doi:10.1038/s41598-021-98949-y
Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJ, Rausalu K, et al. Antiviral activity of silymarin against chikungunya virus. Sci Rep. 2015;5:11421. doi:10.1038/srep11421
Kaur M, Agarwal R. Silymarin and epithelial cancer chemoprevention: how close we are to bedside? Toxicol Appl Pharmacol. 2007;224(3):350-9. doi:10.1016/j.taap.2006.11.011
Polyak SJ, Morishima C, Shuhart MC, Wang CC, Liu Y, Lee DY. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology. 2007;132(5):1925-36. doi:10.1053/j.gastro.2007.02.038
Polyak SJ, Morishima C, Lohmann V, Pal S, Lee DY, Liu Y, et al. Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci U S A. 2010;107(13):5995-9. doi:10.1073/pnas.0914009107
Li D, Hu J, Wang T, Zhang X, Liu L, Wang H, et al. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells. Sci Rep. 2016;6:37751. doi:10.1038/srep37751
Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019;20(18):4331. doi:10.3390/ijms20184331
de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem. 2016;9:1-11. doi:10.2147/aabc.s105289
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi:10.2174/157340911795677602
Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key Topics in Molecular Docking for Drug Design. Int J Mol Sci. 2019;20(18):4574. doi:10.3390/ijms20184574
Pruijssers AJ, George AS, Schafer A, Leist SR, Gralinksi LE, Dinnon KH 3rd, et al. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 2020;32(3):107940. doi:10.1016/j.celrep.2020.107940
Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med. 2022;386(4):305-15. doi:10.1056/nejmoa2116846
Al-Abdouh A, Bizanti A, Barbarawi M, Jabri A, Kumar A, Fashanu OE, et al. Remdesivir for the treatment of COVID-19: A systematic review and meta-analysis of randomized controlled trials. Contemp Clin Trials. 2021;101:106272. doi:10.1016/j.cct.2021.106272
Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020;383(19):1827-37. doi:10.1056/nejmoa2015301
Petit L, Vernès L, Cadoret JP. Correction to: Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J Appl Phycol. 2021;33(3):1603-4. doi:10.1007/s10811-021-02476-2
Thamaraiselvi L, Selvankumar T, Wesely EG, Nathan VK. In Silico Molecular Docking on Bioactive Compounds from Indian Medicinal Plants against Type 2 Diabetic Target Proteins: A Computational Approach. Indian J Pharm Sci. 2021;83(6):1273-9.doi:10.36468/pharmaceutical-sciences.882
Shang J, Wan Y, Luo C, Ye G, Gang Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-34. doi:10.1073/pnas.2003138117
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102-9. doi:10.1093/nar/gky1033
Rueda M, Bottegoni G, Abagyan R. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model. 2009;49(3):716-25. doi:10.1021/ci8003732
Gogoi B, Chowdhury P, Goswami N, Gogoi N, Naiya T, Chetia P, et al. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol Divers. 2021;25(3):1963-77. doi:10.1007/s11030-021-10211-9
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91. doi:10.1002/jcc.21256
Helgren TR, Hagen TJ. Demonstration of AutoDock as an Educational Tool for Drug Discovery. J Chem Educ. 2017;94(3):345-9. doi:10.1021/acs.jchemed.6b00555
Ubani A, Agwom F, Morenikeji OR, Shehu NY, Umera EA, Umar U, et al. Molecular docking analysis of selected phytochemicals on two SARS-CoV-2 targets. F1000Research. 2020;9:1157. doi:10.12688/f1000research.25076.1
Pandit M, Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Res Sq. 2020:rs.3.rs-22687. doi:10.21203/rs.3.rs-22687/v1
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et.al. Analysis of therapeutic targets for SARS-COV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766-88. doi:10.1016/j.apsb.2020.02.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Michael Antony Samy Amutha Gnana Arasi, Sapthasri Ravichandran, Irudayam Jayaraman
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors continue to retain the copyright to the article if the article is published in the Journal of Molecular Docking. They will also retain the publishing rights to the article without any restrictions.
Authors who publish with this journal agree to the following terms:
- Any article on the copyright is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share work with an acknowledgment of the work authors and initial publications in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of published articles of work (eg, post-institutional repository) or publish it in a book, with acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to and during the submission process, as can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material are distributed under the Creative Commons Attribution-ShareAlike 4.0 International License.