Comparative In-Silico Molecular Docking of Silymarin for SARS-CoV-2 Receptor

Authors

DOI:

https://doi.org/10.33084/jmd.v2i1.3270

Keywords:

Covid-19, Silymarin, Remdesivir, SARS-CoV-2, Docking

Abstract

The COVID-19 pandemic has spread worldwide in over 185 countries, with millions of infections and hundreds of thousands of deaths. The current pandemic has made the situation worse, forcing the development of better treatment. In this work, the binding ability of COVID-19 receptors with silymarin has been analyzed using AutoDock 1.4.6. Further, it is compared with the standard drug remdesivir. Silymarin, a potential phytochemical compound obtained from the seeds of the Silybum marianum (milk thistle) plant, has been documented as an antiviral agent against several viruses. So silymarin can also be an effective compound in the treatment of COVID-19. This study aims to determine the binding ability of COVID-19 receptors towards silymarin and further comparative analysis by remdesivir. Drug Discovery Studio version 2021 software was used to analyze ligands and targets. AutoDock 1.4.6 software was used to perform the docking study. Among the various receptors, 5N11 (Human beta1-coronavirus (β1CoV) OC43), 7MJP (SARS-CoV-2 receptor binding domain in complex with neutralizing antibody COVA2-39), 7JMO (SARS-CoV-2 receptor-binding domain in complex with neutralizing antibody COVA2-04) receptors showed the highest binding ability of -8.09, -7.23, -6.96 kcal/mol towards silymarin compared to the standard remdesivir having the docking score of -5.21, -3.76, -2.97 kcal/mol, respectively. By the comparative analysis, silymarin has a better and highest binding ability.

Downloads

Download data is not yet available.

References

Bhavana V, Thakor P, Singh SB, Mehra NK. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARSCoV2 pandemic. Life Sci. 2020;261:118336. doi:10.1016/j.lfs.2020.118336

Penman SL, Kiy RT, Jensen RL, Beoku-Betts C, Alfirevic A, Back D, et al. Safety perspectives on presently considered drugs for the treatment of COVID-19. Br J Pharmacol. 2020;177(19):4353-74. doi:10.1111/bph.15204

Mitjà O, Clotet B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob Health. 2020;8(5):e639-40. doi:10.1016/s2214-109x(20)30114-5

Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci. 2020;252:117652. doi:10.1016/j.lfs.2020.117652

Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res.2020;178;104792. doi:10.1016/j.antiviral.2020.104792

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. doi:10.1038/s41467-020-15562-9

Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011-33. doi:10.3390/v4061011

Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80.e8. doi:10.1016/j.cell.2020.02.052

Ge J, Wang R, Ju B, Zhang Q, Sun J, Chen P, et al. Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nat Commun. 2021;12:250. doi:10.1038/s41467-020-20501-9

Mascolo A, Scavone C, Rafaniello C, De Angelis A, Urbanek K, di Mauro G, et al. The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Front Pharmacol. 2021;12:667254. doi:10.3389/fphar.2021.667254

Liu CH, Jassey A, Hsu HY, Lin LT. Antiviral Activities of Silymarin and Derivatives. Molecules. 2019;24(8):1552. doi:10.3390/molecules24081552

Polyak SJ, Ferenci P, Pawlotsky JM. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology. 2013;57(3):1262-71. doi:10.1002/hep.26179

Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus. Sci Rep. 2021;11(1):21221. doi:10.1038/s41598-021-98949-y

Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJ, Rausalu K, et al. Antiviral activity of silymarin against chikungunya virus. Sci Rep. 2015;5:11421. doi:10.1038/srep11421

Kaur M, Agarwal R. Silymarin and epithelial cancer chemoprevention: how close we are to bedside? Toxicol Appl Pharmacol. 2007;224(3):350-9. doi:10.1016/j.taap.2006.11.011

Polyak SJ, Morishima C, Shuhart MC, Wang CC, Liu Y, Lee DY. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology. 2007;132(5):1925-36. doi:10.1053/j.gastro.2007.02.038

Polyak SJ, Morishima C, Lohmann V, Pal S, Lee DY, Liu Y, et al. Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci U S A. 2010;107(13):5995-9. doi:10.1073/pnas.0914009107

Li D, Hu J, Wang T, Zhang X, Liu L, Wang H, et al. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells. Sci Rep. 2016;6:37751. doi:10.1038/srep37751

Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019;20(18):4331. doi:10.3390/ijms20184331

de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem. 2016;9:1-11. doi:10.2147/aabc.s105289

Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi:10.2174/157340911795677602

Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key Topics in Molecular Docking for Drug Design. Int J Mol Sci. 2019;20(18):4574. doi:10.3390/ijms20184574

Pruijssers AJ, George AS, Schafer A, Leist SR, Gralinksi LE, Dinnon KH 3rd, et al. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 2020;32(3):107940. doi:10.1016/j.celrep.2020.107940

Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med. 2022;386(4):305-15. doi:10.1056/nejmoa2116846

Al-Abdouh A, Bizanti A, Barbarawi M, Jabri A, Kumar A, Fashanu OE, et al. Remdesivir for the treatment of COVID-19: A systematic review and meta-analysis of randomized controlled trials. Contemp Clin Trials. 2021;101:106272. doi:10.1016/j.cct.2021.106272

Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020;383(19):1827-37. doi:10.1056/nejmoa2015301

Petit L, Vernès L, Cadoret JP. Correction to: Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J Appl Phycol. 2021;33(3):1603-4. doi:10.1007/s10811-021-02476-2

Thamaraiselvi L, Selvankumar T, Wesely EG, Nathan VK. In Silico Molecular Docking on Bioactive Compounds from Indian Medicinal Plants against Type 2 Diabetic Target Proteins: A Computational Approach. Indian J Pharm Sci. 2021;83(6):1273-9.doi:10.36468/pharmaceutical-sciences.882

Shang J, Wan Y, Luo C, Ye G, Gang Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-34. doi:10.1073/pnas.2003138117

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102-9. doi:10.1093/nar/gky1033

Rueda M, Bottegoni G, Abagyan R. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model. 2009;49(3):716-25. doi:10.1021/ci8003732

Gogoi B, Chowdhury P, Goswami N, Gogoi N, Naiya T, Chetia P, et al. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol Divers. 2021;25(3):1963-77. doi:10.1007/s11030-021-10211-9

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91. doi:10.1002/jcc.21256

Helgren TR, Hagen TJ. Demonstration of AutoDock as an Educational Tool for Drug Discovery. J Chem Educ. 2017;94(3):345-9. doi:10.1021/acs.jchemed.6b00555

Ubani A, Agwom F, Morenikeji OR, Shehu NY, Umera EA, Umar U, et al. Molecular docking analysis of selected phytochemicals on two SARS-CoV-2 targets. F1000Research. 2020;9:1157. doi:10.12688/f1000research.25076.1

Pandit M, Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. Res Sq. 2020:rs.3.rs-22687. doi:10.21203/rs.3.rs-22687/v1

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et.al. Analysis of therapeutic targets for SARS-COV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766-88. doi:10.1016/j.apsb.2020.02.008

Downloads

Published

2022-06-30

How to Cite

1.
Arasi MASAG, Ravichandran S, Jayaraman I. Comparative In-Silico Molecular Docking of Silymarin for SARS-CoV-2 Receptor. J Mol Docking [Internet]. 2022Jun.30 [cited 2024Dec.22];2(1):58-67. Available from: https://journal.umpr.ac.id/index.php/jmd/article/view/3270

Issue

Section

Original Research Articles