Homology Modeling and Molecular Docking Studies of Selected Substituted Tetradecane on vlsE Borrelia spielmanii
DOI:
https://doi.org/10.33084/jmd.v2i1.3407Keywords:
Homology modeling, docking, Lyme disease, antibacterial, Borrelia burgdorferiAbstract
VlsE is the key enzyme in antibacterial and suicide antigenic variation. While the vlsE of Borrelia burgdorferi sensu lato complex causes Lyme disease. Therefore, vlsE is considered a significant drug target for Lyme disease. In this paper, we report the model of the three-dimensional structure of vlsE resulting from a homology modeling study. Homology modeling was developed using three different software and evaluating the best model. Subsequent docking studies of the natural substrate tetradecane and known antibacterial drugs were performed with SwissDock and shed new light on the binding characteristics of the enzyme. Binding energies ranged from -2024.12 to -2032.17 kcal/mol. As a result, they might be synthesized further and developed into active commercial antibacterial drugs.
Downloads
References
Marques AR, Strle F, Wormser GP. Comparison of Lyme Disease in the United States and Europe. Emerg Infect Dis. 2021;27(8):2017-24. doi:10.3201/eid2708.204763
Jaenson TGT, Wilhelmsson P. First Record of a Suspected Human-Pathogenic Borrelia Species in Populations of the Bat Tick Carios vespertilionis in Sweden. Microorganisms. 2021;9(5):1100. doi:10.3390/microorganisms9051100
Hollström E. Penicillin Treatment of erythema chronicum migrans afzelius. Acta Dermatol Venerol. 1958;38(5):285-9. doi:10.2340/0001555538285289
Rudenko N, Golovchenko M, Grubhoffer L, Oliver Jr JH. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2(3):123-8. doi:10.1016/j.ttbdis.2011.04.002
Rauter C, Hartung T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a metaanalysis. Appl Environ Microbiol. 2005;71(11):7203-16. doi:10.1128/aem.71.11.7203-7216.2005
Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR, et al. Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities. Arthritis Rheum. 1977;20(1):7-17. doi:10.1002/art.1780200102
Radolf JD, Strle K, Lemieux JE, Strle F. Lyme Disease in Humans. Curr Issues Mol Biol. 2021;42:333-84. doi:10.21775/cimb.042.333
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ. Lyme Disease Pathogenesis. Curr Issues Mol Biol. 2021;42:473-518. doi:10.21775/cimb.042.473
Ornstein K, Berglund J, Nilsson I, Norrby R, Bergström S. Characterization of Lyme borreliosis isolates from patients with erythema migrans and neuroborreliosis in southern Sweden. J Clin Microbiol. 2001;39(4):1294-8. doi:10.1128/jcm.39.4.1294-1298.2001
Kraiczy P, Skerka C, Brade V, Zipfel PF. Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect Immun. 2001;69(12):7800-9. doi:10.1128/iai.69.12.7800-7809.2001
Kurtenbach K, Sewell HS, Ogden NH, Randolph SE, Nuttall PA. Serum complement sensitivity as a key factor in Lyme disease ecology. Infect Immun. 1998;66(3):1248-51. doi:10.1128/iai.66.3.1248-1251.1998
Pothineni VR, Parekh MB, Babar MM, Ambati A, Maguire P, Inayathullah M, et al. In vitro and in vivo evaluation of cephalosporins for the treatment of Lyme disease. Drug Des Devel Ther. 2018;12:2915-21. doi:10.2147/dddt.s164966
Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med. 2020;7:57. doi:10.3389/fmed.2020.00057
Cabello FC, Embers ME, Newman SA, Godfrey HP. Borreliella burgdorferi Antimicrobial-Tolerant Persistence in Lyme Disease and Posttreatment Lyme Disease Syndromes. mBio. 2022;13(3):e0344021. doi:10.1128/mbio.03440-21
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens. 2019;8(4):299. doi:10.3390/pathogens8040299
Trevisan G, Cinco M, Trevisini S, di Meo N, Chersi K, Ruscio M, et al. Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. Biology. 2021;10(10):1036. doi:10.3390/biology10101036
Venclikova K, Rudolf I, Mendel J, Betasova L, Hubalek Z. Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis. 2014;5(2):135-8. doi:10.1016/j.ttbdis.2013.09.008
Matuschka FR, Allgöwer R, Spielman A, Richter D. Characteristics of garden dormice that contribute to their capacity as reservoirs for lyme disease spirochetes. Appl Environ Microbiol. 1999;65(2):707-11. doi:10.1128/aem.65.2.707-711.1999
Richter D, Schlee DB, Allgöwer R, Matuschka FR. Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in central Europe. Appl Environ Microbiol. 2004;70(11):6414–9. doi:10.1128/aem.70.11.6414-6419.2004
Földvári G, Farkas R, Lakos A. Borrelia spielmanii erythema migrans, Hungary. Emerg Infect Dis. 2005;11(11):1794–5. doi:10.3201/eid1111.050542
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, et al. Recent Progress in Lyme Disease and Remaining Challenges. Front Med. 2021;8:666554. doi:10.3389/fmed.2021.666554
Rogovskyy AS, Bankhead T. Variable VlsE is critical for host reinfection by the Lyme disease spirochete. PLoS One. 2013;8(4):e61226. doi:10.1371/journal.pone.0061226
McDowell JV, Sung SY, Hu LT, Marconi RT. Evidence that the variable regions of the central domain of VlsE are antigenic during infection with lyme disease spirochetes. Infect Immun. 2002;70(8):4196-203. doi:10.1128/iai.70.8.4196-4203.2002
Tan X, Lin YP, Pereira MJ, Castellanos M, Hahn BL, Anderson P, et al. VlsE, the nexus for antigenic variation of the Lyme disease spirochete, also mediates early bacterial attachment to the host microvasculature under shear force. PLoS Pathog. 2022;18(5):e1010511. doi:10.1371/journal.ppat.1010511
Norris SJ. vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through both Random, Segmental Gene Conversion and Framework Heterogeneity. Microbiol Spectr. 2014;2(6):10.1128/microbiolspec.MDNA3-0038-2014. doi:10.1128/microbiolspec.mdna3-0038-2014
Lone AG, Bankhead T. The Borrelia burgdorferi VlsE Lipoprotein Prevents Antibody Binding to an Arthritis-Related Surface Antigen. Cell Rep. 2020;30(11):3663-70.e5. doi:10.1016/j.celrep.2020.02.081
Bankhead T. Role of the VlsE Lipoprotein in Immune Avoidance by the Lyme Disease Spirochete Borrelia burgdorferi. For Immunopathol Dis Therap. 2016;7(3-4):191-204. doi:10.1615/forumimmundisther.2017019625
Halperin JJ. Chronic Lyme disease: misconceptions and challenges for patient management. Infect Drug Resist. 2015;8:119-28. doi:10.2147/idr.s66739
Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, et al. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021;16(12):5634-51. doi:10.1038/s41596-021-00628-9
Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381-5. doi:10.1093/nar/gkg520
Cardona F, Sánchez‐Mut JV, Dopazo H, Pérez‐Tur J. Phylogenetic and in silico structural analysis of the Parkinson disease‐related kinase PINK1. Hum Mut. 2011;32(4):369-78. doi:10.1002/humu.21444
Hooda V, Gundala PB, Chintala P. Sequence analysis and homology modeling of peroxidase from Medicago sativa. Bioinformation. 2012;8(20):974-9. doi:10.6026/97320630008974
Redfern OC, Dessailly B, Orengo CA. Exploring the structure and function paradigm. Curr Opin Struct Biol. 2008;18(3):394-402. doi:10.1016/j.sbi.2008.05.007
Altschul SF, Madden TL, Schäffer A, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. doi:10.1093/nar/25.17.3389
Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 2016;54:5.6.1-37. doi:10.1002/cpbi.3
Norn C, Wicky BIM, Juergens D, Liu S, Kim D, Tischer D, et al. Protein sequence design by conformational landscape optimization. Proc Natl Acad Sci U S A. 2021;118(11):e2017228118. doi:10.1073/pnas.2017228118
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. doi:10.1093/nar/gky427
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics. 2006;Chapter 5:Unit-5.6. doi:10.1002/0471250953.bi0506s15
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39(Web Server issue):W270-7. doi:10.1093/nar/gkr366
Hu B, Lill MA. Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking. J Chem Inf Model. 2013;53(5):1179-90. doi:10.1021/ci400143r
Sun PD, Foster CE, Boyington JC. Overview of protein structural and functional folds. Curr Protoc Protein Sci. 2004;Chapter17(1):Unit 17.1. doi:10.1002/0471140864.ps1701s35
Ehrt C, Brinkjost T, Koch O. A benchmark driven guide to binding site comparison: An exhaustive evaluation using tailor-made data sets (ProSPECCTs). PLoS Comput Biol. 2018;14(11):e1006483. doi:10.1371/journal.pcbi.1006483
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Venu Paritala, Harsha Thummala, Talluri Naga Santosh Mohith
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors continue to retain the copyright to the article if the article is published in the Journal of Molecular Docking. They will also retain the publishing rights to the article without any restrictions.
Authors who publish with this journal agree to the following terms:
- Any article on the copyright is retained by the author(s).
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share work with an acknowledgment of the work authors and initial publications in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of published articles of work (eg, post-institutional repository) or publish it in a book, with acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to and during the submission process, as can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material are distributed under the Creative Commons Attribution-ShareAlike 4.0 International License.