Homology Modeling and Molecular Docking Studies of Selected Substituted Tetradecane on vlsE Borrelia spielmanii

Authors

DOI:

https://doi.org/10.33084/jmd.v2i1.3407

Keywords:

Homology modeling, docking, Lyme disease, antibacterial, Borrelia burgdorferi

Abstract

VlsE is the key enzyme in antibacterial and suicide antigenic variation. While the vlsE of Borrelia burgdorferi sensu lato complex causes Lyme disease. Therefore, vlsE is considered a significant drug target for Lyme disease. In this paper, we report the model of the three-dimensional structure of vlsE resulting from a homology modeling study. Homology modeling was developed using three different software and evaluating the best model. Subsequent docking studies of the natural substrate tetradecane and known antibacterial drugs were performed with SwissDock and shed new light on the binding characteristics of the enzyme. Binding energies ranged from -2024.12 to -2032.17 kcal/mol. As a result, they might be synthesized further and developed into active commercial antibacterial drugs.

Downloads

Download data is not yet available.

References

Marques AR, Strle F, Wormser GP. Comparison of Lyme Disease in the United States and Europe. Emerg Infect Dis. 2021;27(8):2017-24. doi:10.3201/eid2708.204763

Jaenson TGT, Wilhelmsson P. First Record of a Suspected Human-Pathogenic Borrelia Species in Populations of the Bat Tick Carios vespertilionis in Sweden. Microorganisms. 2021;9(5):1100. doi:10.3390/microorganisms9051100

Hollström E. Penicillin Treatment of erythema chronicum migrans afzelius. Acta Dermatol Venerol. 1958;38(5):285-9. doi:10.2340/0001555538285289

Rudenko N, Golovchenko M, Grubhoffer L, Oliver Jr JH. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2(3):123-8. doi:10.1016/j.ttbdis.2011.04.002

Rauter C, Hartung T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a metaanalysis. Appl Environ Microbiol. 2005;71(11):7203-16. doi:10.1128/aem.71.11.7203-7216.2005

Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR, et al. Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities. Arthritis Rheum. 1977;20(1):7-17. doi:10.1002/art.1780200102

Radolf JD, Strle K, Lemieux JE, Strle F. Lyme Disease in Humans. Curr Issues Mol Biol. 2021;42:333-84. doi:10.21775/cimb.042.333

Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ. Lyme Disease Pathogenesis. Curr Issues Mol Biol. 2021;42:473-518. doi:10.21775/cimb.042.473

Ornstein K, Berglund J, Nilsson I, Norrby R, Bergström S. Characterization of Lyme borreliosis isolates from patients with erythema migrans and neuroborreliosis in southern Sweden. J Clin Microbiol. 2001;39(4):1294-8. doi:10.1128/jcm.39.4.1294-1298.2001

Kraiczy P, Skerka C, Brade V, Zipfel PF. Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect Immun. 2001;69(12):7800-9. doi:10.1128/iai.69.12.7800-7809.2001

Kurtenbach K, Sewell HS, Ogden NH, Randolph SE, Nuttall PA. Serum complement sensitivity as a key factor in Lyme disease ecology. Infect Immun. 1998;66(3):1248-51. doi:10.1128/iai.66.3.1248-1251.1998

Pothineni VR, Parekh MB, Babar MM, Ambati A, Maguire P, Inayathullah M, et al. In vitro and in vivo evaluation of cephalosporins for the treatment of Lyme disease. Drug Des Devel Ther. 2018;12:2915-21. doi:10.2147/dddt.s164966

Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med. 2020;7:57. doi:10.3389/fmed.2020.00057

Cabello FC, Embers ME, Newman SA, Godfrey HP. Borreliella burgdorferi Antimicrobial-Tolerant Persistence in Lyme Disease and Posttreatment Lyme Disease Syndromes. mBio. 2022;13(3):e0344021. doi:10.1128/mbio.03440-21

Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens. 2019;8(4):299. doi:10.3390/pathogens8040299

Trevisan G, Cinco M, Trevisini S, di Meo N, Chersi K, Ruscio M, et al. Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. Biology. 2021;10(10):1036. doi:10.3390/biology10101036

Venclikova K, Rudolf I, Mendel J, Betasova L, Hubalek Z. Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis. 2014;5(2):135-8. doi:10.1016/j.ttbdis.2013.09.008

Matuschka FR, Allgöwer R, Spielman A, Richter D. Characteristics of garden dormice that contribute to their capacity as reservoirs for lyme disease spirochetes. Appl Environ Microbiol. 1999;65(2):707-11. doi:10.1128/aem.65.2.707-711.1999

Richter D, Schlee DB, Allgöwer R, Matuschka FR. Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in central Europe. Appl Environ Microbiol. 2004;70(11):6414–9. doi:10.1128/aem.70.11.6414-6419.2004

Földvári G, Farkas R, Lakos A. Borrelia spielmanii erythema migrans, Hungary. Emerg Infect Dis. 2005;11(11):1794–5. doi:10.3201/eid1111.050542

Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, et al. Recent Progress in Lyme Disease and Remaining Challenges. Front Med. 2021;8:666554. doi:10.3389/fmed.2021.666554

Rogovskyy AS, Bankhead T. Variable VlsE is critical for host reinfection by the Lyme disease spirochete. PLoS One. 2013;8(4):e61226. doi:10.1371/journal.pone.0061226

McDowell JV, Sung SY, Hu LT, Marconi RT. Evidence that the variable regions of the central domain of VlsE are antigenic during infection with lyme disease spirochetes. Infect Immun. 2002;70(8):4196-203. doi:10.1128/iai.70.8.4196-4203.2002

Tan X, Lin YP, Pereira MJ, Castellanos M, Hahn BL, Anderson P, et al. VlsE, the nexus for antigenic variation of the Lyme disease spirochete, also mediates early bacterial attachment to the host microvasculature under shear force. PLoS Pathog. 2022;18(5):e1010511. doi:10.1371/journal.ppat.1010511

Norris SJ. vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through both Random, Segmental Gene Conversion and Framework Heterogeneity. Microbiol Spectr. 2014;2(6):10.1128/microbiolspec.MDNA3-0038-2014. doi:10.1128/microbiolspec.mdna3-0038-2014

Lone AG, Bankhead T. The Borrelia burgdorferi VlsE Lipoprotein Prevents Antibody Binding to an Arthritis-Related Surface Antigen. Cell Rep. 2020;30(11):3663-70.e5. doi:10.1016/j.celrep.2020.02.081

Bankhead T. Role of the VlsE Lipoprotein in Immune Avoidance by the Lyme Disease Spirochete Borrelia burgdorferi. For Immunopathol Dis Therap. 2016;7(3-4):191-204. doi:10.1615/forumimmundisther.2017019625

Halperin JJ. Chronic Lyme disease: misconceptions and challenges for patient management. Infect Drug Resist. 2015;8:119-28. doi:10.2147/idr.s66739

Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, et al. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021;16(12):5634-51. doi:10.1038/s41596-021-00628-9

Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381-5. doi:10.1093/nar/gkg520

Cardona F, Sánchez‐Mut JV, Dopazo H, Pérez‐Tur J. Phylogenetic and in silico structural analysis of the Parkinson disease‐related kinase PINK1. Hum Mut. 2011;32(4):369-78. doi:10.1002/humu.21444

Hooda V, Gundala PB, Chintala P. Sequence analysis and homology modeling of peroxidase from Medicago sativa. Bioinformation. 2012;8(20):974-9. doi:10.6026/97320630008974

Redfern OC, Dessailly B, Orengo CA. Exploring the structure and function paradigm. Curr Opin Struct Biol. 2008;18(3):394-402. doi:10.1016/j.sbi.2008.05.007

Altschul SF, Madden TL, Schäffer A, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. doi:10.1093/nar/25.17.3389

Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 2016;54:5.6.1-37. doi:10.1002/cpbi.3

Norn C, Wicky BIM, Juergens D, Liu S, Kim D, Tischer D, et al. Protein sequence design by conformational landscape optimization. Proc Natl Acad Sci U S A. 2021;118(11):e2017228118. doi:10.1073/pnas.2017228118

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. doi:10.1093/nar/gky427

Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics. 2006;Chapter 5:Unit-5.6. doi:10.1002/0471250953.bi0506s15

Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39(Web Server issue):W270-7. doi:10.1093/nar/gkr366

Hu B, Lill MA. Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking. J Chem Inf Model. 2013;53(5):1179-90. doi:10.1021/ci400143r

Sun PD, Foster CE, Boyington JC. Overview of protein structural and functional folds. Curr Protoc Protein Sci. 2004;Chapter17(1):Unit 17.1. doi:10.1002/0471140864.ps1701s35

Ehrt C, Brinkjost T, Koch O. A benchmark driven guide to binding site comparison: An exhaustive evaluation using tailor-made data sets (ProSPECCTs). PLoS Comput Biol. 2018;14(11):e1006483. doi:10.1371/journal.pcbi.1006483

Downloads

Published

2022-06-30

How to Cite

1.
Paritala V, Thummala H, Mohith TNS. Homology Modeling and Molecular Docking Studies of Selected Substituted Tetradecane on vlsE Borrelia spielmanii. J Mol Docking [Internet]. 2022Jun.30 [cited 2024Dec.22];2(1):16-28. Available from: https://journal.umpr.ac.id/index.php/jmd/article/view/3407

Issue

Section

Original Research Articles