In Silico Approach: Effect of the Oxidation Iron State (Heme-Group) in Steroidogenesis Pathways

Authors

DOI:

https://doi.org/10.33084/jmd.v2i1.3548

Keywords:

Molecular docking, CYPs, specific inhibitors, enzyme inhibitors, Fe state oxidation

Abstract

One of the main design features of enzyme regulators for the CYPs is the presence of a heme-group and different oxidation states in iron atoms. The selective inhibition of a CYP-enzyme can help to reduce the formation of steroidal molecules that causes undesirable disorders and is, therefore a topic of great biochemical-pharmaceutical interest. The present work carried out an analysis of effect on the coupling-energy of the iron core according to its changes from oxidation Fe(II) to Fe(III) state, over inhibitors and substrates, in a particular enzyme. Two crystals from CYP21A2, CYP11A1, CYP17A1 and CYP19A1 enzymes were selected, assigning the oxidation states separately in each case. It was highlighted that for CYP11A1 and CYP19A1 enzymes, no significant difference was observed in coupling energies between Fe oxidation state and crystal stereo-disposition. This last can be used to analyze their congruence towards the reported biological data. For CYP17A1, the ideal crystal for inhibitors design is 6CHI since the crystal with 4NKV presented differences in all the molecules analyzed since the oxidation state of the iron atom changes the molecule's orientation in the enzyme coupling. In contrast, in CYP21A2, no changes were observed. A greater biological congruence with 5BVU was observed because the coupling energies concur with the selectivity of the enzyme towards its endogenous substrates and reported inhibitors. It was concluded that the effect of the oxidation state of iron on the Binding Coupling Energy (BCE) depends directly on the functional groups attached to the steroidal molecule and their stereo-disposition.

Downloads

Download data is not yet available.

References

Bozkurt S, Gumus I, Arslan H. Dinuclear and mononuclear oxorhenium(V) complexes chelated with the S,O bidentate thiourea ligand: Synthesis, crystal structure and catalytic activity. J Organomet Chem. 2019;884:66-76. doi:10.1016/j.jorganchem.2019.01.015

Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J Xenobiot. 2021;11(3):94–114. doi:10.3390/jox11030007

Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr Drug Targets. 2017;19(1):38–54. doi:10.2174/1389450118666170125144557

Liu Y, Grinkova Y, Gregory MC, Denisov IG, Kincaid JR, Sligar SG. Mechanism of the Clinically Relevant E305G Mutation in Human P450 CYP17A1. Biochemistry. 2021;60(43):3262–71. doi:10.1021/acs.biochem.1c00282

Porubek D. CYP17A1: A Biochemistry, Chemistry, and Clinical Review. Curr Top Med Chem. 2013;13(12):1364–84. doi:10.2174/1568026611313120002

Yablokov EO, Sushko TA, Kaluzhskiy LA, Kavaleuski AA, Mezentsev YV, Ershov PV, et al. Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. J Steroid Biochem Mol Biol. 2021;208:105793. doi:10.1016/j.jsbmb.2020.105793

Kim D, Rahaman SMW, Mercado BQ, Poli R, Holland PL. Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study. J Am Chem Soc. 2019;141(18):7473-85. doi:10.1021/jacs.9b02117

Thieffry C, Wynendaele MV, Aynaci A, Maja M, Dupuis C, et al. AG-205 upregulates enzymes involved in cholesterol biosynthesis and steroidogenesis in human endometrial cells independently of PGRMC1 and related MAPR proteins. Biomolecules. 2021;11(10):1472-89. doi:10.3390/biom11101472

Capper CP, Rae JM, Auchus RJ. The Metabolism, Analysis, and Targeting of Steroid Hormones in Breast and Prostate Cancer. Horm Cancer. 2016;7(3):149-64. doi:10.1007/s12672-016-0259-0

Blecharz-Klin K, Sznejder-Pacholek A, Wawer A, Pyrzanowska J, Piechal A, Joniec-Maciejak I, et al. Early exposure to paracetamol reduces level of testicular testosterone and changes gonadal expression of genes relevant for steroidogenesis in rats offspring. Drug Chem Toxicol. 2022;45(4):1862-9. doi:10.1080/01480545.2021.1892941

Fehl C, Vogt CD, Yadav R, Li K, Scott EE, Aubé J. Structure-Based Design of Inhibitors with Improved Selectivity for Steroidogenic Cytochrome P450 17A1 over Cytochrome P450 21A2. J Med Chem. 2018;61(11):4946–60. doi:10.1021/acs.jmedchem.8b00419

Verma G, Khan MF, Akhtar W, Alam MM, Akhter M, Shaquiquzzaman M. Molecular interactions of bisphenols and analogs with glucocorticoid biosynthetic pathway enzymes: an in silico approach. Toxicol Mech Methods. 2018;28(1):45–54. doi:10.1080/15376516.2017.1356415

Tiwari N, Pandey A, Kumar A, Mishra A. Computational models reveal the potential of polycyclic aromatic hydrocarbons to inhibit aromatase, an important enzyme of the steroid biosynthesis pathway. Comput Toxicol. 2021;19:100176. doi:10.1016/j.comtox.2021.100176

Claahsen-van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, et al. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev. 2022;43(1):91–159. doi:10.1210/endrev/bnab016

Bernhardt R, Neunzig J. Underestimated reactions and regulation patterns of adrenal cytochromes P450. Mol Cell Endocrinol. 2021;530:111237. doi:10.1016/j.mce.2021.111237

Concolino P, Costella A. Congenital Adrenal Hyperplasia (CAH) due to 21-Hydroxylase Deficiency: A Comprehensive Focus on 233 Pathogenic Variants of CYP21A2 Gene. Mol Diagn Ther. 2018;22(3):261–80. doi:10.1007/s40291-018-0319-y

Gangodkar P, Khadilkar V, Raghupathy P, Kumar R, Dayal AA, Dayal D, et al. Clinical application of a novel next generation sequencing assay for CYP21A2 gene in 310 cases of 21- hydroxylase congenital adrenal hyperplasia from India. Endocrine. 2021;71(1):189–98. doi:10.1007/s12020-020-02494-z

Teschke R, Neuman MG, Liangpunsakul S, Seitz HK. Alcoholic Liver Disease and the co-triggering Role of MEOS with Its CYP 2E1 Catalytic Cycle and ROS. Arch Gastroenterol Res. 2021;2(1):9–25. doi:10.33696/Gastroenterology.2.022

Magnani L, Frige G, Gadaleta RM, Corleone G, Fabris S, Kempe MH, et al. Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERα metastatic breast cancer. Nat Genet. 2017;49(3):444-50. doi:10.1038/ng.3773

Masamrekh RA, Filippova TA, Haurychenka YI, Sherbakov KA, Veselovsky AV, Shumyantseva VV, et al. The interactions of a number of steroid-metabolizing cytochromes P450 with abiraterone D4A metabolite: spectral analysis and molecular docking. Steroids. 2020;162:108693. doi:10.1016/j.steroids.2020.108693

Abdi SAH, Ali A, Sayed SF, Ahsan MJ, Tahir A, Ahmad W, et al. Morusflavone, a new therapeutic candidate for prostate cancer by cyp17a1 inhibition: Exhibited by molecular docking and dynamics simulation. Plants. 2021;10(9):1912. doi:10.3390/plants10091912

Giampietro L, Gallorini M, Gambacorta N, Ammazzalorso A, De Filippis B, Valle AD, et al. Synthesis, structure-activity relationships and molecular docking studies of phenyldiazenyl sulfonamides as aromatase inhibitors. Eur J Med Chem. 2021;224:113737. doi:10.1016/j.ejmech.2021.113737

Ahmad S, Khan MF, Parvez S, Akhtar M, Raisuddin S. Molecular docking reveals the potential of phthalate esters to inhibit the enzymes of the glucocorticoid biosynthesis pathway. J Appl Toxicol. 2017;37(3):265–77. doi:10.1002/jat.3355

Palermo G, Spinello A, Saha A, Magistrato A. Frontiers of metal-coordinating drug design. Expert Opin Drug Discov. 2021;16(5):497–511. doi:10.1080/17460441.2021.1851188

Dawood HM, Ibrahim RS, Shawky E, Hammoda HM, Metwally AM. Integrated in silico-in vitro strategy for screening of some traditional Egyptian plants for human aromatase inhibitors. J Ethnopharmacol. 2018;224:359–72. doi:10.1016/j.jep.2018.06.009

Morris G, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem. 2009;30(16):2785–91. doi:10.1002/jcc.21256

Allouche AR. Gabedit — A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem. 2010;32(1):174–82. doi:10.1002/jcc.21600

Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci U S A. 2011;108(25):10139–43. doi:10.1073/pnas.1019441108

Petrunak EM, DeVore NM, Porubsky PR, Scott EE. Structures of human steroidogenic cytochrome P450 17A1 with substrates. J Biol Chem. 2014;289(47):32952–64. doi:10.1074/jbc.m114.610998

Ghosh D, Griswold J, Erman M, Pangborn W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature. 2009;457(7226):219–23. doi:10.1038/nature07614

Ghosh D, Lo J, Morton D, Valette D, Xi J, Griswold J, et al. Novel aromatase inhibitors by structure-guided design. J Med Chem. 2012;55(19):8464–76. doi:10.1021/jm300930n

Niemi MH, Takkinen K, Amundsen LK, Söderlund H, Rouvinen J, Höyhtyä M. The testosterone binding mechanism of an antibody derived from a naïve human scFv library. J Mol Recognit. 2011;24(2):209–19. doi:10.1002/jmr.1039

Fernández B, Ríos MA, Carballeira L. Molecular mechanics (MM2) and conformational analysis of compounds with N-C-O units. Parametrization of the force field and anomeric effect. J Comput Chem. 1991;12(1):78–90. doi:10.1002/jcc.540120109

Stewart JJP. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2013;19(1):1–32. doi:10.1007/s00894-012-1667-x

Ghosh D, Egbuta C, Lo J. Testosterone complex and non-steroidal ligands of human aromatase. J Steroid Biochem Mol Biol. 2010;181:11–9. doi:10.1016/j.jsbmb.2018.02.009

Snyder PW, Mecinovic J, Moustakas DT, Thomas 3rd SW, Harder M, Mack ET, et al. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci U S A. 2011;108(44):17889–94. doi:10.1073/pnas.1114107108

Pallan PS, Wang C, Lei L, Yoshimoto FK, Auchus RJ, Waterman MR, et al. Human cytochrome P450 21A2, the major steroid 21-hydroxylase: Structure of the enzyme•progesterone substrate complex and rate-limiting C-H bond cleavage. J Biol Chem. 2015;290(21):13128–43. doi:10.1074/jbc.m115.646307

Robinson PK. Enzymes: principles and biotechnological applications. Essays Biochem. 2015;59:1-41. doi:10.1042/bse0590001

Gay SC, Roberts AG, Halpert JR. Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR. Future Med Chem. 2010;2(9):1451-68. doi:10.4155/fmc.10.229

Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem. 2019;294(51):19683-708. doi:10.1074/jbc.rev119.006217

Poulos TL. Heme enzyme structure and function. Chem Rev. 2014;114(7):3919-62. doi:10.1021/cr400415k

Infield DT, Rasouli A, Galles GD, Chipot C, Tajkhorshid E, Ahern CA. Cation-π Interactions and their Functional Roles in Membrane Proteins. J Mol Biol. 2021;433(17):167035. doi:10.1016/j.jmb.2021.167035

Downloads

Published

2022-06-30

How to Cite

1.
Mora-Martinez D, Organista-Nava J, Sandoval-Ramirez J, Illades-Aguiar B, Carrasco-Carballo A. In Silico Approach: Effect of the Oxidation Iron State (Heme-Group) in Steroidogenesis Pathways. J Mol Docking [Internet]. 2022Jun.30 [cited 2024Nov.15];2(1):44-57. Available from: https://journal.umpr.ac.id/index.php/jmd/article/view/3548

Issue

Section

Original Research Articles