Model Prediksi Tinggi Muka Air Sungai Menggunakan Jaringan Syaraf Tiruan River Water Level Prediction Model Using Artificial Neural Networks

Main Article Content

Agusman
S. Imam Wahyudi
A. Wati Pranoto

Abstract

This study developed a water level prediction model using the integration of Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). ANN maps nonlinear relationships between hydrological parameters, while LSTM captures temporal dependence patterns in time series data. The comparison results of four models—Linear Regression, ANN, LSTM, and ANN–LSTM hybrid—showed that the neural network-based model provided significantly better prediction performance than the linear model. The Linear Regression model produced the largest error (MSE 0.0175; RMSE 0.128; MAE 0.103; R² 0.785), followed by ANN with a significant increase in accuracy (MSE 0.0114; RMSE 0.101; MAE 0.0549; R² 0.874). LSTM provided better results (MSE 0.0048; RMSE 0.067; MAE 0.0472; R² 0.902), but the best model was the hybrid ANN–LSTM with the lowest error value (MSE 0.00417; RMSE 0.063; MAE 0.0388) and the highest R² (0.937). This combination is able to capture nonlinear patterns and temporal dynamics more optimally, resulting in stable and accurate predictions. In addition, this study shows that the Duflow hydrodynamic model has the potential to be developed as a mitigation simulation tool for water level management, such as testing extreme rainfall scenarios, spatial changes, flood control infrastructure operations, channel optimization, and simulating the impacts of climate change.

Downloads

Download data is not yet available.

Article Details

How to Cite
Agusman, Wahyudi, S. I., & Pranoto, A. W. (2026). Model Prediksi Tinggi Muka Air Sungai Menggunakan Jaringan Syaraf Tiruan: River Water Level Prediction Model Using Artificial Neural Networks. Media Ilmiah Teknik Sipil, 14(1), 391–399. Retrieved from https://journal.umpr.ac.id/index.php/mits/article/view/11440
Section
Articles

References

Br, H. (1993). Analisis hidrologi. Penerbit PT Gramedia Pustaka Utama. https://books.google.co.id/books?id=LuZRcgAACAAJ.

Bustami, R., Bessaih, N., Bong, C., & Suhaili, S. (2007). rosIJCS_34_2_10. IAENG International Journal of Computer Science, November.

Crétaux, J. F., Arsen, A., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M. C., Nino, F., Abarca Del Rio, R., Cazenave, A., & Maisongrande, P. (2011). SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 47(9), 1497–1507. https://doi.org/10.1016/j.asr.2011.01.004

De Fraiture, C., Susanto, R. H., Suryadi, F. X., Mutiara, H., & Wahyu, H. (2017). URBAN DRAINAGE MANAGEMENT AND FLOOD CONTROL IMPROVEMENT USING DUFLOW CASE STUDY: AUR SUB CATCHMENT, PALEMBANG, SOUTH SUMATRA, INDONESIA. In Makara Journal of Technology. http://journal.ui.ac.id/technology

Ehteram, M., Ferdowsi, A., Faramarzpour, M., Al-Janabi, A. M. S., Al-Ansari, N., Bokde, N. D., & Yaseen, Z. M. (2021). Hybridization of artificial intelligence models with nature inspired optimization algorithms for lake water level prediction and uncertainty analysis. Alexandria Engineering Journal, 60(2), 2193–2208. https://doi.org/10.1016/j.aej.2020.12.034

Herath, M., Jayathilaka, T., & Hoshino, Y. (2023). applied sciences Deep Machine Learning-Based Water Level Prediction Model for Colombo Flood Detention Area.

Jayadianti, H., Cahyadi, T. A., Amri, N. A., & Pitayandanu, M. F. (2020). Metode Komparasi Artificial Neural Network pada Prediksi Curah Hujan-Literature Review. Jurnal Tekno Insentif, 14(2), 47–53.

Li, H., Zhang, L., Zhang, Y., Yao, Y., Wang, R., & Dai, Y. (2024). Water-Level Prediction Analysis for the Three Gorges Reservoir Area Based on a Hybrid Model of LSTM and Its Variants. Water (Switzerland), 16(9). https://doi.org/10.3390/w16091227

Li, Q., Liu, H. D., & Zhao, Y. (2011). Analysis and prediction for Xiaolangdi reservoir sand blocking operation period and water level of the lower Yellow River. Applied Mechanics and Materials, 71–78, 1318–1323. https://doi.org/10.4028/www.scientific.net/AMM.71-78.1318

Marcela, J., Castillo, M., Manuel, J., Cspedes, S., Eduardo, H., & Cuchango, E. (2020). Water Level Prediction Using Artificial Neural Network Model. July.

Mohammed, S. J., Zubaidi, S. L., Al-Ansari, N., Ridha, H. M., & Al-Bdairi, N. S. S. (2022). Hybrid Technique to Improve the River Water Level Forecasting Using Artificial Neural Network-Based Marine Predators Algorithm. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/6955271

Sastrodihardjo, S. (2010). Upaya mengatasi masalah banjir secara menyeluruh. Yayasan Badan Penerbit Pekerjaan Umum, Mediatama Saptakarya. https://books.google.co.id/books?id=t1blZwEACAAJ

SİDAL, F., & ALTUN, Y. (2023). Prediction of Lake Van Water Level using Artificial Neural Network Model with Meteorological Parameters and Multiple Linear Regression Analysis: A Comparative Study. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12(4), 1028–1040. https://doi.org/10.17798/bitlisfen.1316881

Tamiru, H., & Dinka, M. O. (2021). Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 36. https://doi.org/10.1016/j.ejrh.2021.100855

Thieken, A., Zenker, M.-L., & Bubeck, P. (2023). Flood-related fatalities during the flood of July 2021 in North Rhine-Westphalia, Germany: what can be learnt for future flood risk management? Journal of Coastal and Riverine Flood Risk, 2. https://doi.org/10.59490/jcrfr.2023.0005