Inovasi Dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran

Innovation And Design Of Darrieus Hydrokinetic Turbines Based On The Shape Of Flow Velocity Distribution


  • Citra Sari Wardani Universitas Palangka Raya
  • Dwi Anung Nindito Universitas Palangka Raya
  • Allan Restu Jaya Universitas Palangka Raya



Hidrokinetik, Darrieus, Spinning Top Darrieus, Distribusi Kecepatan Aliran


Darrieus turbine use blades with a hydrofoil shape, so the rotational ability is influenced by lift force. This caused the initial rotation capability to be very low when compared to the drag turbine type. The flow velocity distribution in the vertical direction indicates a small cross-sectional speed of flow approaching the base of the flow channel, then rising towards the surface. Darrieus Spinning Top turbine is the result of innovation and design based on the concept of flow velocity distribution. Darrieus Spinning Top turbine’s blade shapes are circular-arc and straight-line, adjusting flow velocity distribution of 0.2H, 0.6H and 0.8H from the top of the turbine. In this study, a performance comparison was conducted between Darrieus turbine and Spinning Top Darrieus. Darrieus turbines produce RPM and torque values of 54.59 – 67.90 and 0.014 – 0.029 Nm, respectively. Darrieus Spinning Top turbines produce RPM values and torque of 69.24 – 82.02 and 0.012 – 0.020 Nm respectively. RPM improvements in Darrieus Spinning Top turbine design increase the influence of lift force (increased λ value). This results in a high lap rate, but requires a high self starting to perform the turbine rotation cycle.


Download data is not yet available.

Author Biographies

Citra Sari Wardani, Universitas Palangka Raya

Student of Civil Engineering, Universitas Palangka Raya

Dwi Anung Nindito, Universitas Palangka Raya

Lecturer of Civil Engineering, Universitas Palangka Raya

Allan Restu Jaya, Universitas Palangka Raya

Lecturer of Civil Engineering, Universitas Palangka Raya


Balduzzi, F. et al. (2016) ‘Critical Issues in The CFD Simulation Of Darrieus Wind Turbines’, Renewable Energy, 85, pp. 419–435.
Behrouzi, F., Maimun, A. and Nakisa, M. (2014) ‘Review of Various Designs and Development in Hydropower Turbines’, World Academy of Science, Engineering and Technology, 8(2), pp. 293–297.
Febrianto, A. and Santoso, A. (2017) ‘Analisa Perbandingan Torsi dan RPM Turbin Tipe Darrieus Terhadap Efisiensi Turbin’, Jurnal Teknik ITS, 5(2).
Hantoro, R. et al. (2018) ‘Innovation in Vertical Axis Hydrokinetic Turbine - Straight Blade Cascaded (VAHT-SBC) design and testing for low current speed power generation’, Journal of Physics: Conference Series, 1022(1).
Khan, M. J., Iqbal, M. T. and Quaicoe, J. E. (2006) ‘Design Considerations of A Straight Bladed Darrieus Rotor for River Current Turbines’, IEEE International Symposium on Industrial Electronics, 3(2), pp. 1750–1755.
Kironoto, B. A. and Walter H. Graf (1994) ‘Turbulence Characteristics in Rough Uniform Open-Channel’, in Proc. Instn Civ. Engrs Wat., Marif. &Energy, pp. 333–334.
López, O. et al. (2016) ‘Computational Study of Transient Flow Around Darrieus Type Cross Flow Water Turbines’, Journal of Renewable and Sustainable Energy, 8(1).
Mohamed, M. H. (2012) ‘Performance Investigation of H-Rotor Darrieus Turbine with New Airfoil Shapes’, Energy, 47(1), pp. 522–530.
Nindito, D. A. (2009) ‘Pengaruh Profil Distribusi Kecepatan Terhadap Hasil Perhitungan Kecepatan Gesek pada Aliran Bersedimen di Lokasi Pengukuran Arah Transversal Saluran Tampang Segiempat’, Jurnal PROTEKSI (Program Studi Teknik Sipil), pp. 8–15.
Nindito, D. A., Istiarto, I. and Kironoto, B. (2009) ‘Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon’, Forum Teknik Sipil.
Nindito, D. A. and Kamiana, I. M. (2010) ‘Perencanaan Model PLTA Skala Kecil Berbasis Teknologi Lokal di Daerah Pemukimam Tepi Sungai’, PROTEKSI, 2, pp. 1–7.
Sahim, K. et al. (2014) ‘Experimental Study of Darrieus-Savonius Water Turbine with Deflector: Effect of Deflector on The Performance’, International Journal of Rotating Machinery, 2014.
Shaheen, M. and Abdallah, S. (2017) ‘Efficient Clusters and Patterned Farms for Darrieus Wind Turbines’, Sustainable Energy Technologies and Assessments, 19, pp. 125–135.
Simamora, Y. and Nindito, D. A. (2009) ‘Kajian Profil Distribusi Kecepatan dan Distribusi Konsentrasi Sedimen Suspensi untuk Kondisi Aliran Seragam Terhadap Lokasi Pengambilan Sampel Sedimen Arah Transversal’, Rekayasa Rancang Bangun, 10, pp. 17–26.
Torresi, M., Fortunato, B. and Camporeale, S. M. (2013) ‘An Efficient 3D CFD Model For The Analysis Of The Flow Field Around Darrieus Rotors’, in Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. 1–14.
Wang, Y. et al. (2016) ‘Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine’, Renewable Energy, 86, pp. 316–323.
William Beans, E. (1987) ‘Approximate Aerodynamic Analysis for Multi-Blade Darrieus Wind Turbines’, Journal of Wind Engineering and Industrial Aerodynamics, 25(2), pp. 131–150.
Yuce, M. I. and Muratoglu, A. (2015) ‘Hydrokinetic Energy Conversion Systems: A Technology Status Review’, Renewable and Sustainable Energy Reviews, 43, pp. 72–82.




How to Cite

Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi Dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran: Innovation And Design Of Darrieus Hydrokinetic Turbines Based On The Shape Of Flow Velocity Distribution. Media Ilmiah Teknik Sipil, 9(1), 32–43.