ANALISIS PERFORMA INCEPTIONV3 CONVOLUTIONAL NETWORK PADA KLASIFIKASI VARIETAS DAUN GRAPEVINE
Performance Analysis of InceptionV3 Convolutional Network Used for Grapevine Leaves Varieties Classification
DOI:
https://doi.org/10.33084/jsakti.v5i2.5022Keywords:
varietas daun grapevine, InceptionV3, Klasifikasi, Image ProcessingAbstract
Daun Grapevine digunakan dalam berbagai masakan tradisional di seluruh dunia. Mengenali berbagai jenis daun Grapevine menjadi semakin penting karena harga dan rasanya bervariasi. Akan tetapi, identifikasi jenis daun ini secara manual akan sulit dan membutuhkan waktu yang lama. Sehingga, beberapa penelitian tentang klasifikasi daun ini dilakukan dengan memanfaatkan metode machine learning. Penelitian ini bertujuan untuk mengklasifikasikan 5 jenis daun Grapevine menggunakan arsitektur InceptionV3 yang merupakan salah satu arsitektur Convolutional Neural Network (CNN). Dataset yang digunakan adalah dataset publik yang terdiri dari 500 gambar, dimana untuk masing-masing kelas terdiri dari 100 gambar yaitu Ak (100), Ala Idris (100), Buzgulu (100), Dimnit (100), Nazli (100). Tahapan pertama dari penelitian ini dengan cara membagi dataset menjadi data training dan data testing. Prosentase data training sebesar 80% (400 gambar) dan data testing 20% (100 gambar). Tahapan selanjutnya dengan melakukan preprocessing gambar, dimulai dengan augmentasi gambar kemudian merubah ukuran gambar menjadi 300x300 pixel. Hasil dari preprocessing gambar inilah yang digunakan untuk uji coba model. Jika peneliti sebelumnya mengusulkan model berbasis Densenet-30 dan menghasilkan akurasi 98%, peneltian ini dengan menggunakan model InceptionV3 Convolutional Network berhasil mencapai akurasi sebesar 99.5%.
Downloads
References
Aakif, A., & Khan, M. F. (2015). Automatic classification of plants based on their leaves. Biosystems Engineering, 139, 66–75. https://doi.org/10.1016/j.biosystemseng.2015.08.003
Ahmed, H. A., Hama, H. M., Jalal, S. I., & Ahmed, M. H. (2023). Deep Learning in Grapevine Leaves Varieties Classification Based on Dense Convolutional Network. Journal of Image and Graphics, 11(1), 98–103. https://doi.org/10.18178/joig.11.1.98-103
Alessandrini, M., Calero Fuentes Rivera, R., Falaschetti, L., Pau, D., Tomaselli, V., & Turchetti, C. (2021). A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning. Data in Brief, 35, 106809. https://doi.org/10.1016/j.dib.2021.106809
Banjanin, T., Uslu, N., Vasic, Z. R., & Özcan, M. M. (2021). Effect of grape varieties on bioactive properties, phenolic composition, and mineral contents of different grape-vine leaves. Journal of Food Processing and Preservation, 45(2), 0–2. https://doi.org/10.1111/jfpp.15159
Bharate, A. A., & Shirdhonkar, M. S. (2020). Classification of Grape Leaves using KNN and SVM Classifiers. Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020, Iccmc, 745–749. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000139
Binnar, V., & Sharma, S. (2023). Plant Leaf Diseases Detection Using Deep Learning Algorithms. Lecture Notes in Electrical Engineering, 946(1), 217–228. https://doi.org/10.1007/978-981-19-5868-7_17
Çakmak, M. (2023). Grapevine Leaves Classification using Transfer Learning and Fine Tuning.
Hasan, M. A., Riana, D., Swasono, S., Priyatna, A., Pudjiarti, E., & Prahartiwi, L. I. (2020). Identification of Grape Leaf Diseases Using Convolutional Neural Network. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012007
Hassan, S. M., Maji, A. K., Jasiński, M., Leonowicz, Z., & Jasińska, E. (2021). Identification of plant-leaf diseas[1] S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of plant-leaf diseases using cnn and transfer-learning approach,” Electron., vol. 10, no. 12, 2021, doi: 10.3390/electronics101213. Electronics (Switzerland), 10(12).
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90
Li, H., Wei, Y., Zhang, H., Chen, H., & Meng, J. (2022). Fine-grained classification of grape leaves via a pyramid residual convolution neural network. International Journal of Agricultural and Biological Engineering, 15(2), 197–203. https://doi.org/10.25165/j.ijabe.20221502.6894
Liu, B., Ding, Z., Tian, L., He, D., Li, S., & Wang, H. (2020). Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks. Frontiers in Plant Science, 11(July), 1–14. https://doi.org/10.3389/fpls.2020.01082
Nader, A., Khafagy, M. H., & Hussien, S. A. (2022). Grape Leaves Diseases Classification using Ensemble Learning and Transfer Learning. International Journal of Advanced Computer Science and Applications, 13(7), 563–571. https://doi.org/10.14569/IJACSA.2022.0130767
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 2818–2826. https://doi.org/10.1109/CVPR.2016.308
Venkatesh, Nagaraju, Y., Sahana, T. S., Swetha, S., & Hegde, S. U. (2020). Transfer Learning based Convolutional Neural Network Model for Classification of Mango Leaves Infected by Anthracnose. 2020 IEEE International Conference for Innovation in Technology, INOCON 2020. https://doi.org/10.1109/INOCON50539.2020.9298269
You, J. (2021). Leaf Image Classification Using Deep Learning Network. Academic Journal of Computing & Information Science, 4(3), 109–115. https://doi.org/10.25236/ajcis.2021.040317
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nurul Huda, Adiyah Mahiruna, Wellie Sulistijanti; Rina Chandra Noor Santi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. This publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording.