ANALISIS PERFORMA INCEPTIONV3 CONVOLUTIONAL NETWORK PADA KLASIFIKASI VARIETAS DAUN GRAPEVINE

Performance Analysis of InceptionV3 Convolutional Network Used for Grapevine Leaves Varieties Classification

Authors

  • Nurul Huda Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang
  • Adiyah Mahiruna Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang
  • Wellie Sulistijanti Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang
  • Rina Chandra Noor Santi Universitas Stikubank

DOI:

https://doi.org/10.33084/jsakti.v5i2.5022

Keywords:

varietas daun grapevine, InceptionV3, Klasifikasi, Image Processing

Abstract

Daun Grapevine digunakan dalam berbagai masakan tradisional di seluruh dunia. Mengenali berbagai jenis daun Grapevine menjadi semakin penting karena harga dan rasanya bervariasi. Akan tetapi, identifikasi jenis daun ini secara manual akan sulit dan membutuhkan waktu yang lama. Sehingga, beberapa penelitian tentang klasifikasi daun ini dilakukan dengan memanfaatkan metode machine learning. Penelitian ini bertujuan untuk mengklasifikasikan 5 jenis daun Grapevine menggunakan arsitektur InceptionV3 yang merupakan salah satu arsitektur Convolutional Neural Network (CNN). Dataset yang digunakan adalah dataset publik yang terdiri dari 500 gambar, dimana untuk masing-masing kelas terdiri dari 100 gambar yaitu Ak (100), Ala Idris (100), Buzgulu (100), Dimnit (100), Nazli (100). Tahapan pertama dari penelitian ini dengan cara membagi dataset menjadi data training dan data testing. Prosentase data training sebesar 80% (400 gambar) dan data testing 20% (100 gambar). Tahapan selanjutnya dengan melakukan preprocessing gambar, dimulai dengan augmentasi gambar kemudian merubah ukuran gambar menjadi 300x300 pixel. Hasil dari preprocessing gambar inilah yang digunakan untuk uji coba model. Jika peneliti sebelumnya mengusulkan model berbasis Densenet-30 dan menghasilkan akurasi 98%, peneltian ini dengan menggunakan model InceptionV3 Convolutional Network berhasil mencapai akurasi sebesar 99.5%.

Downloads

Download data is not yet available.

Author Biographies

Nurul Huda, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Adiyah Mahiruna, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Wellie Sulistijanti, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Rina Chandra Noor Santi, Universitas Stikubank

References

Aakif, A., & Khan, M. F. (2015). Automatic classification of plants based on their leaves. Biosystems Engineering, 139, 66–75. https://doi.org/10.1016/j.biosystemseng.2015.08.003

Ahmed, H. A., Hama, H. M., Jalal, S. I., & Ahmed, M. H. (2023). Deep Learning in Grapevine Leaves Varieties Classification Based on Dense Convolutional Network. Journal of Image and Graphics, 11(1), 98–103. https://doi.org/10.18178/joig.11.1.98-103

Alessandrini, M., Calero Fuentes Rivera, R., Falaschetti, L., Pau, D., Tomaselli, V., & Turchetti, C. (2021). A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning. Data in Brief, 35, 106809. https://doi.org/10.1016/j.dib.2021.106809

Banjanin, T., Uslu, N., Vasic, Z. R., & Özcan, M. M. (2021). Effect of grape varieties on bioactive properties, phenolic composition, and mineral contents of different grape-vine leaves. Journal of Food Processing and Preservation, 45(2), 0–2. https://doi.org/10.1111/jfpp.15159

Bharate, A. A., & Shirdhonkar, M. S. (2020). Classification of Grape Leaves using KNN and SVM Classifiers. Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020, Iccmc, 745–749. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000139

Binnar, V., & Sharma, S. (2023). Plant Leaf Diseases Detection Using Deep Learning Algorithms. Lecture Notes in Electrical Engineering, 946(1), 217–228. https://doi.org/10.1007/978-981-19-5868-7_17

Çakmak, M. (2023). Grapevine Leaves Classification using Transfer Learning and Fine Tuning.

Hasan, M. A., Riana, D., Swasono, S., Priyatna, A., Pudjiarti, E., & Prahartiwi, L. I. (2020). Identification of Grape Leaf Diseases Using Convolutional Neural Network. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012007

Hassan, S. M., Maji, A. K., Jasiński, M., Leonowicz, Z., & Jasińska, E. (2021). Identification of plant-leaf diseas[1] S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of plant-leaf diseases using cnn and transfer-learning approach,” Electron., vol. 10, no. 12, 2021, doi: 10.3390/electronics101213. Electronics (Switzerland), 10(12).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90

Li, H., Wei, Y., Zhang, H., Chen, H., & Meng, J. (2022). Fine-grained classification of grape leaves via a pyramid residual convolution neural network. International Journal of Agricultural and Biological Engineering, 15(2), 197–203. https://doi.org/10.25165/j.ijabe.20221502.6894

Liu, B., Ding, Z., Tian, L., He, D., Li, S., & Wang, H. (2020). Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks. Frontiers in Plant Science, 11(July), 1–14. https://doi.org/10.3389/fpls.2020.01082

Nader, A., Khafagy, M. H., & Hussien, S. A. (2022). Grape Leaves Diseases Classification using Ensemble Learning and Transfer Learning. International Journal of Advanced Computer Science and Applications, 13(7), 563–571. https://doi.org/10.14569/IJACSA.2022.0130767

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 2818–2826. https://doi.org/10.1109/CVPR.2016.308

Venkatesh, Nagaraju, Y., Sahana, T. S., Swetha, S., & Hegde, S. U. (2020). Transfer Learning based Convolutional Neural Network Model for Classification of Mango Leaves Infected by Anthracnose. 2020 IEEE International Conference for Innovation in Technology, INOCON 2020. https://doi.org/10.1109/INOCON50539.2020.9298269

You, J. (2021). Leaf Image Classification Using Deep Learning Network. Academic Journal of Computing & Information Science, 4(3), 109–115. https://doi.org/10.25236/ajcis.2021.040317

Downloads

Published

2023-06-08

How to Cite

Huda, N., Mahiruna, A., Sulistijanti, W., & Santi, R. C. N. (2023). ANALISIS PERFORMA INCEPTIONV3 CONVOLUTIONAL NETWORK PADA KLASIFIKASI VARIETAS DAUN GRAPEVINE: Performance Analysis of InceptionV3 Convolutional Network Used for Grapevine Leaves Varieties Classification. Jurnal Sains Komputer Dan Teknologi Informasi, 5(2), 47–53. https://doi.org/10.33084/jsakti.v5i2.5022