Evaluasi Support Vector Machine Dengan Optimasi Metode Genetic Algorithm Pada Klasifikasi Banjir Kota Samarinda
DOI:
https://doi.org/10.33084/jsakti.v6i1.5462Keywords:
Support Vector Machine, Klasifikasi, Genetica Algorithm, Data Mining, BanjirAbstract
Banjir merupakan bencana alam yang sering terjadi di Indonesia, terutama di kota Samarinda yang terletak di Kalimantan Timur. Penelitian ini bertujuan untuk meningkatkan akurasi dengan menerapkan metode seleksi fitur menggunakan Genetic Algorithm (GA). Melalui analisis data banjir kota Samarinda, ditemukan bahwa terdapat tiga atribut yang paling berpengaruh terhadap terjadinya banjir, yaitu kelembapan, lamanya penyinaran matahari, dan kecepatan angin. Selanjutnya, penelitian ini menggunakan algoritma Support Vector Machine (SVM) untuk mengklasifikasikan data banjir. Dengan menerapkan seleksi fitur menggunakan GA, hasil pengujian menunjukkan peningkatan akurasi algoritma SVM sebesar 13.45%. Sebelum penerapan seleksi fitur, akurasi SVM hanya mencapai 52,71%, namun setelah penerapan seleksi fitur menggunakan GA, akurasi meningkat menjadi 66,16%. Hasil ini membuktikan bahwa seleksi fitur dengan menggunakan GA efektif dalam meningkatkan akurasi prediksi banjir. Kesimpulan dari penelitian ini adalah seleksi fitur menggunakan GA dapat mengidentifikasi atribut-atribut yang paling berpengaruh terhadap terjadinya banjir di kota Samarinda. Penerapan seleksi fitur ini menghasilkan peningkatan signifikan dalam akurasi algoritma SVM untuk prediksi banjir.
Downloads
References
Abdullah, R. K., & Utami, E. (2018). Studi Komparasi Metode SVM dan Naive Bayes pada Data Bencana Banjir di Indonesia pembaca ataupun peneliti bisa melihat pola yang tersembunyi di Indonesia. Tecnoscienza, 3(1), 103–122.
Elva, Y. (2019). Sistem Penjadwalan Mata Pelajaran Menggunakan Algoritma Genetika. Jurnal Teknologi Informasi, 3(1), 49. https://doi.org/10.36294/jurti.v3i1.687
Fitriana, D. N., & Sibaroni, Y. (2020). Sentiment Analysis on KAI Twitter Post Using Multiclass Support Vector Machine (SVM). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), 846–853. https://doi.org/10.29207/resti.v4i5.2231
Mian, T. S., & Ghabban, F. (2022). Competitive Advantage: A Study of Saudi SMEs to Adopt Data Mining for Effective Decision Making. Journal of Data Analysis and Information Processing, 10(03), 155–169. https://doi.org/10.4236/jdaip.2022.103010
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181(2019), 526–534. https://doi.org/10.1016/j.procs.2021.01.199
Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B., Viglione, A., Plötner, S., Guse, B., Schumann, A., Fischer, S., Ahrens, B., Anwar, F., Bárdossy, A., Bühler, P., Haberlandt, U., Kreibich, H., Krug, A., Lun, D., … Wietzke, L. (2019). Causative classification of river flood events. Wiley Interdisciplinary Reviews: Water, 6(4), 1–23. https://doi.org/10.1002/wat2.1353
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yuliana Dilla Evitasari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. This publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording.