Application of Time Series For Palm Oil Production Prediction At PT. Dwie Warna Karya
PENERAPAN TIME SERIES UNTUK PREDIKSI PRODUKSI MINYAK KELAPA SAWIT DI PT. DWIE WARNA KARYA
Keywords:
Machine Learning, Palm Oil, SARIMA, Time SeriesAbstract
Fluctuations in palm oil production at PT. Dwie Warna Karya negatively impact the company's efficiency and profitability. This study aims to implement the Time Series method using the SARIMA model to accurately predict palm oil production, enabling the company to make better decisions in production planning and operations. This research employs a quantitative approach with descriptive and predictive analysis, utilizing data collected through interviews, literature studies, and historical production documentation. The SARIMA (1,1,1)(1,1,1)12_{12} model is identified as the most suitable for forecasting palm oil production over the next 12 months. The model indicates that production is influenced by previous values, requires first-order differencing to address trends, and includes a random component affected by prior forecasting errors, both in the short-term and seasonal patterns. This SARIMA model enhances forecasting accuracy and serves as a valuable reference for production planning, inventory management, and strategic decision-making.
Downloads
References
Durrah, F. I., Yulia, Parhusip, T. P., & Rusyana, A. (2018). Peramalan Jumlah Penumpang Pesawat Di Bandara Sultan Iskandar Muda Dengan Metode SARIMA (Seasonal Autoregressive Integrated Moving Average). Journal of Data Analysis, 1-11.
Levia, D., & Mhubaligh. (2023). Analisis Proses Produksi CPO Untuk Mengidentifikasi Faktor-Faktor Yang Mempengaruhi Kualitas Mutu CPO. Jurnal Teknologi dan Manajemen Industri Terapan, 82-89.
Nazar, R. (2024). Implementasi Pemrograman Python Menggunakan Google Colab. Jurnal Informatika dan Komputer (JIK), 50-56.
Ruhiat, D., & Effendi, A. (2018). Pengaruh Faktor Musiman Pada Pemodelan Deret Waktu Untuk Peramalan Debit Sungai Dengan Metode Sarima. Jurnal Teori dan Riset Matematika (TEOREMA), 117-128.
Soen, G. I., Marlina, & Renny. (2022). Implementasi Cloud Computing dengan Google Colaboratory pada Aplikasi Pengolah Data Zoom Participants. JITU : Journal Informatic Technology And Communicatione, 24-30.
Suseno, & Wibowo, S. (2023). Penerapan Metode ARIMA dan SARIMA Pada Peramalan Penjualan Telur Ayam Pada PT Agromix Lestari Group. Jurnal Teknologi dan Manajemen Industri Terapan , 33-40.
Tokan, L. F., & Hermawan, A. (2023). Implementasi Model SARIMA Untuk Memprediksi Produksi Minyak Kelapa Sawit. Jurnal Fasilkom, 456-563.
Wahyudi, A., & Mujilahwati, S. (2023). Implementasi Metode Time Series untuk Prediksi dan Monitoring Pendapatan Masla Delivery Berbasis Website. Joutica, 1-6.
Wibowo, A. (2018). Model Peramalan Indeks Harga Konsumen Kota Palangka Raya Menggunakan Seasonal ARIMA (SARIMA). Jurnal Teori dan terapan Matematika, 17-24.
Yudha, E. P., & Bagaskara, F. (2024). Analisis Daya Saing Ekspor Kelapa Sawit (CPO) Indonesia dan Malaysia di India. Agroinfo Galuh Jurnal Ilmiah Mah, 1212-1227.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elsa Monica Putri, Veny Cahya Hardita, Catharina Elmayantie

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. This publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording.