Pertumbuhan Akar Kedelai pada Cekaman Kekeringan
The Growth of Soybean Root on Drought Stress
DOI:
https://doi.org/10.33084/daun.v3i1.163Keywords:
fase vegetatif, genotipe, PEG, akarAbstract
Cekaman kekeringan dapat menyebabkan perubahan sistem perakaran tanaman kedelai. Tujuan penelitian ini adalah mempelajari sistem perakaran beberapa genotipe kedelai pada kondisi kekeringan pada fase vegetatif. Penelitian dilaksanakan di rumah kaca Cikabayan-IPB menggunakan sepuluh genotipe kedelai (Ratai, Seulawah, Slamet, Tanggamus, Wilis, GC 22-10, PG 57-1, SC 21-5, SC 39-1, SP 30-4) dan PEG (0%, 20%). Cekaman kekeringan hanya diberikan pada fase vegetatif. Hasil penelitian menunjukkan bahwa cekaman kekeringan dengan simulasi PEG berpengaruh terhadap panjang akar, jumlah cabang akar dan bobot kering akar.Downloads
Download data is not yet available.
References
Aboyami YA. 2008. Comparative growth and grain yield responses of early and late soybean maturity group to induced soil moisture stress at different growth stages.World J Agric Sci. 4(1):71-78.
Afa LO,Purwoko BS, Junaedi A, Haridjaja O, Dewi IS. 2013. Deteksi dini toleransi padi hibrida terhadap kekeringan menggunakan PEG 6000. J Agron Indonesia. 41(1): 9–15.
Ashri K. 2006. Akumulasi enzim antioksidan dan prolin pada beberapa varietas kedelai toleran dan peka cekaman kekeringan [tesis]. Bogor (ID): Institut Pertanian Bogor.
BadianeFA, Diouf D, Sane1 D, Diouf O, Goudiaby V, Diallo N. 2004. Screening cowpea [Vigna unguiculata (L.) Walp.]varieties by inducing water deficit and RAPD analyses. Afr J Biotech. 3(3):174-178.
Bhardwaj J, Yadav SK. 2012. Comparative study on biochemical parameters and antioksidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. AmJ Plant Physiol. 7(1):17-29.
Chazen O, Neumann PM. 1994. Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zeamays L.) leaves are primary responses to polyethylene glycol-lnduced water deficits. Plant Physiol. 104:1385-1392.
Hamim, Sopandie D, Jusuf M. 1996. Beberapa karakteristik morfologi dan fisiologi kedelai toleran dan peka terhadap cekaman kekeringan. Hayati. 3(1):30-34.
Hanum C. Mugnisjah WQ, Yahya S. Sopandy D. Idris K. Sahar A. 2007. Pertumbuhan akar kedelai pada cekaman aluminium, kekeringan dan cekaman ganda aluminium dan kekeringan. Agritrop. 26(1):13-18.
Henry A, Cal AJ,Batoto TC,Torres RO,Serraj R. 2012. Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot. 63:4751–4763.
Husni AM, Kosmiatin M, Mariska I. 2006. Peningkatan toleransi kedelai Sindoro terhadap kekeringan melalui seleksi in vitro. Bul Agron. 34(1):25–31.
Kalefetoglu T. Ekmekci Y. 2005. The effects of drought on plants and tolerant mechanisms. J Sci. 18(4):723-740.
Kocheva K, Georgiev G. 2003. Evaluation of the reaction of two contrasting barley (Hordeum vulgarel L.) cultivars in response to osmotic stress with PEG 6000. BulgJ Plant Physiol Special Issue:290-294.
Kron AP, Souza GM, Ribeiro RV. 2008. Water deficiency at different developmental stagesof Glycine max can improve drought tolerance. Bragantia Campinas. 1(67):43-49.
Kusvuran, S. 2012. Influence of drought stress on growth, ion accumulation and anti-oxidative enzymes in okragenotypes. International JAgricBiol.14: 401–406.
Levitt J. 1980. Responses of Plants to Environmental Stresses. Ed ke-2. New York (US): Academic Pr.
Lynch JP, Brown KM. 2012. New roots for agriculture: exploiting the root phenome. Phil Trans R Soc B. 367: 1598–1604.
Lobatto AKS, Filho BGS, Costa RCL, Neto CFO, Meirelles ACS, Cruz FJR, Alves GAR, Neves HKB, Pita JD, Lopes MJS, Freitas JMN, Monteiro BS, Ramos RF. 2008. Physiological and biochemical changes in soybean (Glycine max) plants under progressive water deficit during the vegetatif phase. Agric J. 3(5):327-333.
Murthy SM, Devaraj VR, Anitha P, Tejavathi DH. 2012. Studies on the activities of antioxidant enzymes under induced drought stress in in vivo and in vitro plants of Macrotyloma uniflorum (Lam.) Verdc. RRST. 4(2): 34-37.
Mexal J, Fisher JT, Osteryoung J, Reid CPP. 1975. Oxygen availability in polyethylene glycol solution and its implications in plant-water relation. Plant Physiol. 55:20-24.
Puangbut D, Jogloy S, Vorasot N, Akkasaeng C, Kesmala T, Rachaputi RCN, Wright GC, Patanothai A. 2009. Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agric Water Manage. 96:1460-1466.
Radhouane, L. 2007. Response of Tunisian autochthonous pearl millet (Pennisetum glaucum (L.) R. Br.) to drought stress induced by polyethylene glycol (PEG) 6000. Afr J Biotech. 6(9):1102-1105.
Ranawake AL, Amarasingha UGS, Rodrigo WDRJ, Rodrigo UTD, Dahanayaka N. 2011. Effect of water stress on growth and yield of mung bean (Vigna radiate L). Trop Agric Res Extension. 14(4): 76-79
Riduan A, Aswidinnoor H, Koswara J, Sudarsono. 2005. Toleransi sejumlah kultivar kacang tanah terhadap cekaman kekeringan. Hayati. 12(1): 28-34.
Songsri P, Jogloy S, Holbrook CC, Kesmala T, Vorasot N, Akkasaeng C, Patanothai A. 2009. Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agric Water Manage. 96:790-798.
Sunaryo W. 2002. Regenerasi dan evaluasi variasi somaklonal kedelai (Glycine max (L.) Merrill) hasil kultur jaringan serta seleksi terhadap cekaman kekeringan menggunakan simulasi Poly Ethylene Glycol (PEG) [tesis]. Bogor (ID): Institut Pertanian Bogor.
Susilawati PN. 2003. Respon 16 kultivar kacang tanah unggul nasional (Arachis hypogaea L.) terhadap kondisi stress kekeringan akibat perlakuan penyiraman PEG 6000 dan evaluasi daya regenerasi embrio somatiknya secara in vitro [tesis]. Bogor: Institut Pertanian Bogor.
Vasellati V, Oesterhel M, Medan D, Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann Bot. 88:355-360.
Widoretno W, Guhardja E, Ilyas S, Sudarsono. 2002. Efektivitas polyethylene glycol untuk mengevaluasi tanggapan grnotipe kedelai terhadap cekaman kekeringan pada fase perkecambahan. Hayati. 9(2):33-36.
Afa LO,Purwoko BS, Junaedi A, Haridjaja O, Dewi IS. 2013. Deteksi dini toleransi padi hibrida terhadap kekeringan menggunakan PEG 6000. J Agron Indonesia. 41(1): 9–15.
Ashri K. 2006. Akumulasi enzim antioksidan dan prolin pada beberapa varietas kedelai toleran dan peka cekaman kekeringan [tesis]. Bogor (ID): Institut Pertanian Bogor.
BadianeFA, Diouf D, Sane1 D, Diouf O, Goudiaby V, Diallo N. 2004. Screening cowpea [Vigna unguiculata (L.) Walp.]varieties by inducing water deficit and RAPD analyses. Afr J Biotech. 3(3):174-178.
Bhardwaj J, Yadav SK. 2012. Comparative study on biochemical parameters and antioksidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. AmJ Plant Physiol. 7(1):17-29.
Chazen O, Neumann PM. 1994. Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zeamays L.) leaves are primary responses to polyethylene glycol-lnduced water deficits. Plant Physiol. 104:1385-1392.
Hamim, Sopandie D, Jusuf M. 1996. Beberapa karakteristik morfologi dan fisiologi kedelai toleran dan peka terhadap cekaman kekeringan. Hayati. 3(1):30-34.
Hanum C. Mugnisjah WQ, Yahya S. Sopandy D. Idris K. Sahar A. 2007. Pertumbuhan akar kedelai pada cekaman aluminium, kekeringan dan cekaman ganda aluminium dan kekeringan. Agritrop. 26(1):13-18.
Henry A, Cal AJ,Batoto TC,Torres RO,Serraj R. 2012. Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot. 63:4751–4763.
Husni AM, Kosmiatin M, Mariska I. 2006. Peningkatan toleransi kedelai Sindoro terhadap kekeringan melalui seleksi in vitro. Bul Agron. 34(1):25–31.
Kalefetoglu T. Ekmekci Y. 2005. The effects of drought on plants and tolerant mechanisms. J Sci. 18(4):723-740.
Kocheva K, Georgiev G. 2003. Evaluation of the reaction of two contrasting barley (Hordeum vulgarel L.) cultivars in response to osmotic stress with PEG 6000. BulgJ Plant Physiol Special Issue:290-294.
Kron AP, Souza GM, Ribeiro RV. 2008. Water deficiency at different developmental stagesof Glycine max can improve drought tolerance. Bragantia Campinas. 1(67):43-49.
Kusvuran, S. 2012. Influence of drought stress on growth, ion accumulation and anti-oxidative enzymes in okragenotypes. International JAgricBiol.14: 401–406.
Levitt J. 1980. Responses of Plants to Environmental Stresses. Ed ke-2. New York (US): Academic Pr.
Lynch JP, Brown KM. 2012. New roots for agriculture: exploiting the root phenome. Phil Trans R Soc B. 367: 1598–1604.
Lobatto AKS, Filho BGS, Costa RCL, Neto CFO, Meirelles ACS, Cruz FJR, Alves GAR, Neves HKB, Pita JD, Lopes MJS, Freitas JMN, Monteiro BS, Ramos RF. 2008. Physiological and biochemical changes in soybean (Glycine max) plants under progressive water deficit during the vegetatif phase. Agric J. 3(5):327-333.
Murthy SM, Devaraj VR, Anitha P, Tejavathi DH. 2012. Studies on the activities of antioxidant enzymes under induced drought stress in in vivo and in vitro plants of Macrotyloma uniflorum (Lam.) Verdc. RRST. 4(2): 34-37.
Mexal J, Fisher JT, Osteryoung J, Reid CPP. 1975. Oxygen availability in polyethylene glycol solution and its implications in plant-water relation. Plant Physiol. 55:20-24.
Puangbut D, Jogloy S, Vorasot N, Akkasaeng C, Kesmala T, Rachaputi RCN, Wright GC, Patanothai A. 2009. Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agric Water Manage. 96:1460-1466.
Radhouane, L. 2007. Response of Tunisian autochthonous pearl millet (Pennisetum glaucum (L.) R. Br.) to drought stress induced by polyethylene glycol (PEG) 6000. Afr J Biotech. 6(9):1102-1105.
Ranawake AL, Amarasingha UGS, Rodrigo WDRJ, Rodrigo UTD, Dahanayaka N. 2011. Effect of water stress on growth and yield of mung bean (Vigna radiate L). Trop Agric Res Extension. 14(4): 76-79
Riduan A, Aswidinnoor H, Koswara J, Sudarsono. 2005. Toleransi sejumlah kultivar kacang tanah terhadap cekaman kekeringan. Hayati. 12(1): 28-34.
Songsri P, Jogloy S, Holbrook CC, Kesmala T, Vorasot N, Akkasaeng C, Patanothai A. 2009. Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agric Water Manage. 96:790-798.
Sunaryo W. 2002. Regenerasi dan evaluasi variasi somaklonal kedelai (Glycine max (L.) Merrill) hasil kultur jaringan serta seleksi terhadap cekaman kekeringan menggunakan simulasi Poly Ethylene Glycol (PEG) [tesis]. Bogor (ID): Institut Pertanian Bogor.
Susilawati PN. 2003. Respon 16 kultivar kacang tanah unggul nasional (Arachis hypogaea L.) terhadap kondisi stress kekeringan akibat perlakuan penyiraman PEG 6000 dan evaluasi daya regenerasi embrio somatiknya secara in vitro [tesis]. Bogor: Institut Pertanian Bogor.
Vasellati V, Oesterhel M, Medan D, Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann Bot. 88:355-360.
Widoretno W, Guhardja E, Ilyas S, Sudarsono. 2002. Efektivitas polyethylene glycol untuk mengevaluasi tanggapan grnotipe kedelai terhadap cekaman kekeringan pada fase perkecambahan. Hayati. 9(2):33-36.
Downloads
Published
2016-06-01
How to Cite
Rosawanti, P. (2016). Pertumbuhan Akar Kedelai pada Cekaman Kekeringan: The Growth of Soybean Root on Drought Stress. Daun: Jurnal Ilmiah Pertanian Dan Kehutanan, 3(1), 21–28. https://doi.org/10.33084/daun.v3i1.163
Issue
Section
Articles
License
All rights reserved. This publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording.