Badai Sitokin pada Covid-19: Ulasan Naratif
Cytokine Storm in Covid-19: Narative Review
DOI:
https://doi.org/10.33084/jsm.v10i1.7243Keywords:
COVID-19, Coronavirus, Badai SitokinAbstract
SARS-Cov-2 adalah virus yang dapat menyebabkan terjadinya penyakit COVID-19 yang parah yang terkait dengan peningkatan produksi sitokin/kemokin proinflamasi. Badai sitokin adalah pelepasan sitokin proinflamasi yang berlebihan atau tidak terkendali yang menyebabkan kekacauan pada sistem kekebalan tubuh dan respon inflamasi yang tidak terkendali. Artikel ini dibuat dengan tujuan untuk memberikan pemahaman terkait badai sitokin, patofisiologi yang menyertainya, manifestasi klinis, pengukuran laboratorium, dan faktor-faktor yang memicu terjadinya badai sitokin. Badai sitokin pada COVID-19 ini menyebabkan terjadinya kegagalan multi-organ bahkan kematian. Faktor-faktor yang menyebabkan terjadinya badai sitokin pada pasien COVID-19 ini bukan saja disebabkan oleh adanya SARS-CoV-2 tetapi adanya factor pendukung lain seperti usia yang lebih tua, jenis kelamin laki-laki, golongan darah A serta adanya gangguan metabolisme pada pasien seperti peningkatan tekanan darah, obesitas maupun diabetes.
Downloads
References
Ahmadpoor, P. and Rostaing, L. 2020. Why the immune system fails to mount an adaptive immune response to a COVID‐19 infection’. Available at: https://doi.org/10.1111/tri.13611.
Alqahtani, J.S. et al. 2020. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis’, PLoS ONE, 15(5), p. e0233147. Available at: https://doi.org/10.1371/journal.pone.0233147.
Behrens, E.M. 2017. Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era’. Available at: https://doi.org/10.1002/art.40071.
Channappanavar, R. and Perlman, S. 2017. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology’, Seminars in Immunopathology, 39(5), pp. 529–539. Available at: https://doi.org/10.1007/s00281-017-0629-x.
Chegni, H. et al. 2020. Is There a Link between COVID-19 Mortality with Genus, Age, ABO Blood Group Type, and ACE2 Gene Polymorphism?’, Iranian Journal of Public Health, 49(8), pp. 1582–1584. Available at: https://doi.org/10.18502/ijph.v49i8.3910.
Demeulemeester, F. et al. 2021. Obesity as a Risk Factor for Severe COVID-19 and Complications: A Review’, Cells, 10(4), p. 933. Available at: https://doi.org/10.3390/cells10040933.
Fajgenbaum, D.C. and June, C.H. 2020. Cytokine Storm’, The New England Journal of Medicine, 383(23), pp. 2255–2273. Available at: https://doi.org/10.1056/NEJMra2026131.
Fara, A. et al. 2020. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines’, Open Biology, 10(9), p. 200160. Available at: https://doi.org/10.1098/rsob.200160.
Gasparyan, A.Y. et al. 2020. Perspectives of Immune Therapy in Coronavirus Disease 2019’, Journal of Korean Medical Science, 35(18), p. e176. Available at: https://doi.org/10.3346/jkms.2020.35.e176.
Hu, B., Huang, S. and Yin, L. 2021. The cytokine storm and COVID‐19’, Journal of Medical Virology, 93(1), pp. 250–256. Available at: https://doi.org/10.1002/jmv.26232.
Landstra, C.P. and de Koning, E.J.P. 2021. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course’, Frontiers in Endocrinology, 12, p. 649525. Available at: https://doi.org/10.3389/fendo.2021.649525.
Lee, D.W. et al. 2014. Current concepts in the diagnosis and management of cytokine release syndrome’, Blood, 124(2), pp. 188–195. Available at: https://doi.org/10.1182/blood-2014-05-552729.
Lee, D.W. et al. 2019. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells’, Biology of Blood and Marrow Transplantation, 25(4), pp. 625–638. Available at: https://doi.org/10.1016/j.bbmt.2018.12.758.
Liu, Y. et al. 2020. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury’, National Science Review, 7(6), pp. 1003–1011. Available at: https://doi.org/10.1093/nsr/nwaa037.
Mauvais, F. 2020. Aging, Male Sex, Obesity, and Metabolic Inflammation Create the Perfect Storm for COVID-19 | Diabetes | American Diabetes Association. Available at: https://diabetesjournals.org/diabetes/article/69/9/1857/39412/Aging-Male-Sex-Obesity-and-Metabolic-Inflammation (Accessed: 20 January 2023).
Montazersaheb, S. et al. 2022. COVID-19 infection: an overview on cytokine storm and related interventions’, Virology Journal, 19(1), p. 92. Available at: https://doi.org/10.1186/s12985-022-01814-1.
Mordwinkin, N.M. et al. 2012. Angiotensin-(1-7) administration reduces oxidative stress in diabetic bone marrow’, Endocrinology, 153(5), pp. 2189–2197. Available at: https://doi.org/10.1210/en.2011-2031.
Muhamad, S.-A. et al. 2021. COVID-19 and Hypertension: The What, the Why, and the How’, Frontiers in Physiology, 12. Available at: https://www.frontiersin.org/articles/10.3389/fphys.2021.665064 (Accessed: 21 January 2023).
Muñoz-Durango, N. et al. 2016. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension’, International Journal of Molecular Sciences, 17(7), p. 797. Available at: https://doi.org/10.3390/ijms17070797.
Ocaranza, M.P. et al. 2014. Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system’, Clinical Science (London, England: 1979), 127(9), pp. 549–557. Available at: https://doi.org/10.1042/CS20130449.
Prompetchara, E., Ketloy, C. and Palaga, T. 2020 ‘Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic’, Asian Pacific Journal of Allergy and Immunology, 38(1), pp. 1–9. Available at: https://doi.org/10.12932/AP-200220-0772.
de la Rica, R., Borges, M. and Gonzalez-Freire, M. 2020. COVID-19: In the Eye of the Cytokine Storm’, Frontiers in Immunology, 11. Available at: https://www.frontiersin.org/article/10.3389/fimmu.2020.558898 (Accessed: 4 May 2022).
Ruggieri, A., Gagliardi, M.C. and Anticoli, S. 2018. Sex-Dependent Outcome of Hepatitis B and C Viruses Infections: Synergy of Sex Hormones and Immune Responses?’, Frontiers in Immunology, 9, p. 2302. Available at: https://doi.org/10.3389/fimmu.2018.02302.
Sparks, M.A. et al. 2014. Classical Renin-Angiotensin system in kidney physiology’, Comprehensive Physiology, 4(3), pp. 1201–1228. Available at: https://doi.org/10.1002/cphy.c130040.
Tang, L. et al. 2020. Controlling Cytokine Storm Is Vital in COVID-19’, Frontiers in Immunology, 11. Available at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.570993 (Accessed: 1 December 2022).
Tisoncik, J.R. et al. 2012. Into the Eye of the Cytokine Storm’, Microbiology and Molecular Biology Reviews : MMBR, 76(1), pp. 16–32. Available at: https://doi.org/10.1128/MMBR.05015-11.
Yang, L. et al. 2021. The signal pathways and treatment of cytokine storm in COVID-19’, Signal Transduction and Targeted Therapy, 6(1), p. 255. Available at: https://doi.org/10.1038/s41392-021-00679-0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aisyah Nur Sapriati, Fita Rahmawati, Titik Nuryastuti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. This publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording.