Variasi Slice Thickness dan Rekonstruks Increment Terhadap Informasi Citra Anatomi Pemeriksaa MSCT Stonografi pada Kasus Nephrolithiasis Slice Thickness Variation and Increment Recnonstruction on Anatomic Image Information of MSCT Stonography Examination in Nephrolithiasis Cases
Main Article Content
Abstract
Nephrolithiasis, atau batu ginjal, merupakan salah satu gangguan urologi yang umum dan membutuhkan diagnosis yang akurat. Multislice Computed Tomography (MSCT) Stonografi menjadi modalitas utama untuk mendeteksi batu ginjal. Kualitas citra anatomi yang dihasilkan MSCT sangat dipengaruhi oleh variasi slice thickness dan rekonstruksi increment, yang berperan penting dalam diagnosis klinis. Tujuan Penelitian ini bertujuan untuk menganalisis variasi slice thickness dan rekonstruksi increment terhadap informasi citra anatomi pada pemeriksaan MSCT stonografi pada kasus nephrolithiasis. Metode Penelitian ini merupakan penelitian kuantitatif eksperimental dengan desain one-shot case study. Sebanyak 10 pasien yang didiagnosis nephrolithiasis menjalani pemeriksaan MSCT stonografi dengan variasi slice thickness (1mm, 4mm, 5mm, dan 10mm) serta rekonstruksi increment (0,3mm, 1,6mm, 2,5mm, dan 3mm). Evaluasi informasi citra anatomi dinilai oleh dua radiolog menggunakan kuisioner yang mencakup enam kriteria anatomi: renal hilux, left ureter, perirenal fat, renal pelvis, calix, dan Gerota’s fascia. Analisis statistik dilakukan menggunakan Friedman. Hasil penelitian menunjukkan bahwa terdapat perbedaan signifikan antara variasi slice thickness dan rekonstruksi increment terhadap informasi citra anatomi P value 0.000 (p<0.05). Kombinasi slice thickness 1 mm dan rekonstruksi increment 0,3mm menghasilkan informasi citra anatomi yang paling optimal dengan mean rank tertinggi (4.00). Slice thickness 10mm dan rekonstruksi increment 3mm menghasilkan informasi citra anatomi terendah dengan mean rank terendah (1.00). Uji Friedman menunjukkan perbedaan signifikan pada setiap anatomi dengan p value 0.000. Kesimpulan Variasi slice thickness dan rekonstruksi increment berpengaruh signifikan terhadap informasi citra anatomi pada pemeriksaan MSCT stonografi. Kombinasi slice thickness 1 mm dan rekonstruksi increment 0,3mm direkomendasikan untuk menghasilkan informasi citra yang optimal dalam diagnosis nephrolithiasis.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. This publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording.
References
Abdulkareem, N. K., Hajee, S. I., Hassan, F. F., Ibrahim, I. K., Al-Khalidi, R. E. H., & Abdulqader, N. A. 2023. Investigating the slice thickness effect on noise and diagnostic content of single-source multi-slice computerized axial tomography. Journal of Medicine and Life, 16(6), 862–867. https://doi.org/10.25122/jml-2022-0188
Al-Shawi, M. M., Aljama, N. A., Aljedani, R., Alsaleh, M. H., Atyia, N., Alsedrah, A., & Albardi, M. 2022. The Role of Radiological Imaging in the Diagnosis and Treatment of Urolithiasis: A Narrative Review. Cureus. https://doi.org/10.7759/cureus.33041
Brisbane, W., Bailey, M. R., & Sorensen, M. D. 2016. An overview of kidney stone imaging techniques. In Nature Reviews Urology (Vol. 13, Issue 11, pp. 654–662). Nature Publishing Group. https://doi.org/10.1038/nrurol.2016.154
Chang, C., & Davies, J. A. 2019. In developing mouse kidneys, orientation of loop of Henle growth is adaptive and guided by long‐range cues from medullary collecting ducts. Journal of Anatomy, 235(2), 262–270. https://doi.org/10.1111/joa.13012
Chao, Z., & Kim, H. J. 2019. Slice interpolation of medical images using enhanced fuzzy radial basis function neural networks. Computers in Biology and Medicine, 110, 66–78. https://doi.org/10.1016/j.compbiomed.2019.05.013
Courbebaisse, M., Travers, S., Bouderlique, E., Michon-Colin, A., Daudon, M., De Mul, A., Poli, L., Baron, S., & Prot-Bertoye, C. 2023. Hydration for Adult Patients with Nephrolithiasis: Specificities and Current Recommendations. Nutrients, 15(23), 4885. https://doi.org/10.3390/nu15234885
Euclid Seeram. 2016. Computed Tomography: Physical Principles, Clinical Application and Quality Control. In Radiology: Vol. vol (Fourth). Elsevier, chicago Pennsylvaria, mosby.
Gamage, K. N., Jamnadass, E., Sulaiman, S. K., Pietropaolo, A., Aboumarzouk, O., & Somani, B. K. 2020. The role of fluid intake in the prevention of kidney stone disease: A systematic review over the last two decades. Türk Üroloji Dergisi/Turkish Journal of Urology, 46(Supp1), S92–S103. https://doi.org/10.5152/tud.2020.20155
Gavrielides, M. A., Zeng, R., Myers, K. J., Sahiner, B., & Petrick, N. 2013. Benefit of Overlapping Reconstruction for Improving the Quantitative Assessment of CT Lung Nodule Volume. Academic Radiology, 20(2), 173–180. https://doi.org/10.1016/j.acra.2012.08.014
Gupta, A., Li, S., Ji, G., Xiong, H., Peng, J., & Huang, J. 2019. The Role of Imaging in Diagnosis of Urolithiasis and Nephrolithiasis—A Literature Review Article. Yangtze Medicine, 03(04), 301–312. https://doi.org/10.4236/ym.2019.34029
Hamimi, A., & El Azab, M. 2016. MSCT renal stone protocol; Dose penalty and influence on management decision of patients: Is it really worth the radiation dose? Egyptian Journal of Radiology and Nuclear Medicine, 47(1), 319–324. https://doi.org/10.1016/j.ejrnm.2015.11.001
Hussain, S., Mubeen, I., Ullah, N., Shah, S. S. U. D., Khan, B. A., Zahoor, M., Ullah, R., Khan, F. A., & Sultan, M. A. 2022. Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. In BioMed Research International (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/5164970
Khalili, P., Jamali, Z., Sadeghi, T., Esmaeili-nadimi, A., Mohamadi, M., Moghadam-Ahmadi, A., Ayoobi, F., & Nazari, A. 2021. Risk factors of kidney stone disease: a cross-sectional study in the southeast of Iran. BMC Urology, 21(1), 141. https://doi.org/10.1186/s12894-021-00905-5
Lasiyah, N., Anam, C., Hidayanto, E., & Dougherty, G. 2021. Automated procedure for slice thickness verification of computed tomography images: Variations of slice thickness, position from iso‐center, and reconstruction filter. Journal of Applied Clinical Medical Physics, 22(7), 313–321. https://doi.org/10.1002/acm2.13317
Listiyani, I. L., Nismayanti, A., Maskur, M., Kasman, K., Ulum, M. S., & Rahman, Abd. R. 2021. Analisis Noise Level Hasil Citra CT-Scan Pada Phantom Kepala Dengan Variasi Tegangan Tabung Dan Ketebalan Irisan. Gravitasi, 20(1), 5–9. https://doi.org/10.22487/gravitasi.v20i1.15517
Liu, Y., Chen, Y., Liao, B., Luo, D., Wang, K., Li, H., & Zeng, G. 2018. Epidemiology of urolithiasis in Asia. In Asian Journal of Urology (Vol. 5, Issue 4, pp. 205–214). Editorial Office of Asian Journal of Urology. https://doi.org/10.1016/j.ajur.2018.08.007
Made, N., Dewadatta, J., Safarini, B., & Masrochah, S. (n.d.). THE EXAMINATION OF CT STONOGRAPHY WITH NEPHROLITHIASIS CASE AT RADIOLOGY INSTALLATION PANTI WILASA “DR.CIPTO” SEMARANG HOSPITAL.
Putu Rita Jeniyanthi, N., Istri Ariwidiastuti, C., Bagus Gede Dharmawan, I., Battola Toding, T., & Radiodiagnostik dan Radioteraphy Bali, A. 2024. Analisis Pengaruh Variasi Slice Thickness Terhadap Kualitas Citra Pemeriksaan CT Scan Urografi Pada Kasus Nefrolitiasis Di RS TK. II Pelamonia Makassar. Jurnal Ilmu Kesehatan Dan Gizi (JIG), 2(1). https://doi.org/10.55606/jikg.v2i1.2147
Raharja, P. A. R., Hamid, A. R. A. H., Mochtar, C. A., & Umbas, R. 2018. Case of perinephric abscess disguising as renal tumor. Urology Case Reports, 18, 35–37. https://doi.org/10.1016/j.eucr.2018.02.021
Sambawitasia, I. P. Y. 2022. Teknik Pemeriksaan CT Stonografi pada Kasus Nefrolitiasis di Instalasi Radiologi RSUD Kabupaten Buleleng. Nautical: Journal Ilmiah Multidisiplin, 1 no. 9(2829–632), 868–873.
Skolarikos, A., Dellis, A., & Knoll, T. 2015. Ureteropelvic obstruction and renal stones: etiology and treatment. Urolithiasis, 43(1), 5–12. https://doi.org/10.1007/s00240-014-0736-2
Stamatelou, K., & Goldfarb, D. S. 2023. Epidemiology of Kidney Stones. In Healthcare (Switzerland) (Vol. 11, Issue 3). MDPI. https://doi.org/10.3390/healthcare1103042
Sumeet Bhargava, S. K. B. 2018. CT and MRI protocol A Pratical Approach. Departament of Radiology and Imaging University Coollege of Medical Sciences and GTB Hospital Universityof Delhi.
Tan, Y., Guo, P., Mann, H., Marley, S. E., Scott, M. L. J., Schwartz, L. H., Ghiorghiu, D. C., & Zhao, B. 2012. Assessing the effect of CT slice interval on unidimensional, bidimensional and volumetric measurements of solid tumours. Cancer Imaging, 12(3), 497–505. https://doi.org/10.1102/1470-7330.2012.0046
Tingberg, A., Herrmann, C., Besjakov, J., Almen, A., Sund, P., Adliene, D., Mattsson, S., Mansson, L. G., & Panzer, W. 2002. What is worse: decreased spatial resolution or increased noise?. Medical Imaging 2002: Image Perception, Observer Performance, and Technology Assessment, 4686, 338–346. https://doi.org/10.1117/12.462695
Torricelli, F. C. M., & Monga, M. 2020. Staghorn renal stones: what the urologist needs to know. International Braz j Urol, 46(6), 927–933. https://doi.org/10.1590/s1677-5538.ibju.2020.99.07
Wu, S., Nakao, M., Imanishi, K., Nakamura, M., Mizowaki, T., & Matsuda, T. 2022. Computed Tomography slice interpolation in the longitudinal direction based on deep learning techniques: To reduce slice thickness or slice increment without dose increase. PLoS ONE, 17(12 December). https://doi.org/10.1371/journal.pone.0279005