Penerapan Kecerdasan Buatan dalam Penelitian Demam Berdarah: Analisis Bibliometrik

Applying Artificial Intelligence in Dengue Fever Research: A Bibliometric Analysis

Authors

  • Mirnawati Dewi Universitas Palangka Raya
  • Jane Kristin Universitas Palangka Raya

DOI:

https://doi.org/10.33084/jsm.v11i2.9755

Keywords:

Demam Berdarah, Kecerdasan Buatan, Deep Learning, Bibliometrik

Abstract

Nyamuk genus Aedes merupakan nyamuk yang berperan menularkan demam berdarah dengue (DBD). Penerapan teknologi melalui serangkaiaan proses komputasi telah dimanfaatkan untuk mencegah penyebaran dan memberantas DBD. Sehingga studi ini bertujuan menganalisis penelitian DBD dari tahun 2015 hingga Oktober 2024 melalui analisis teknologi bibliometrik. Pendekatan analisis data bibliometrik yang merupakan perkembangan penelitian dalam kecerdasan buatan (AI) yang mengidentifikasi dan mendeteksi penelitian kasus dengue secara otomatis. Perangkat lunak yang digunakan yaitu VOSviewer dan Publish or Perish (PoP) untuk mengeksplorasi tren publikasi. Sebanyak 200 artikel dianalisis, yang menunjukkan peningkatan penelitian dengue menggunakan teknologi komputasi dalam lima tahun terakhir. Studi ini menunjukkan pemrosesan dan visualisasi data bibliometrik yang efektif, memberikan wawasan mendalam tentang pola dan tren dalam penelitian dengue. Hasil studi ini pula menunjukkan metode kecerdasan buatan yaitu deep learning pada penelitian dengue masih sedikit yang mencerminkan fokus utama dalam penelitian dengue kedepannya. Sehingga memberikan kontribusi yang signifikan terhadap upaya global untuk mengendalikan dan memberantas penyakit ini, khususnya di Indonesia.

Downloads

Author Biographies

Mirnawati Dewi, Universitas Palangka Raya

Jane Kristin, Universitas Palangka Raya

References

Balakrishnan, V., Kehrabi, Y., Ramanathan, G., Paul, S.A. & Tiong, C.K., 2023, Machine learning approaches in diagnosing tuberculosis through biomarkers - A systematic review, Progress in Biophysics and Molecular Biology, 179.

Dehghani, R. & Kassiri, H., 2021, A review on epidemiology of dengue viral infection as an emerging disease, Research Journal of Pharmacy and Technology, 14(4).

Dengen, A., no date, International Journal on Computational Engineering Journal Homepage www.comien.org/index.php/comien Applying Artificial Intelligence in Malaria Mosquito Research: A Bibliometric Study on Species Identification and Automated Detection.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W.M., 2021, ‘How to conduct a bibliometric analysis: An overview and guidelines’, Journal of Business Research, 133.

Harapan, H., Michie, A., Mudatsir, M., Sasmono, R.T. & Imrie, A., 2019, ‘Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance’, BMC Research Notes, 12(1).

Haryanto, S., Hayati, R.F., Yohan, B., Sijabat, L., Sihite, I.F., Fahri, S., Meutiawati, F., Halim, J.A.N., Halim, S.N., Soebandrio, A. & Sasmono, R.T., 2016, ‘The molecular and clinical features of dengue during outbreak in Jambi, Indonesia in 2015’, Pathogens and Global Health, 110(3).

Hernandez-Delgado, M., Salvador-Galvez, B. & Valdez- Garcia, J., 2021, ‘Dengue Fever: Ophthalmological Perspective’, International Journal of Tropical Diseases, 4(1).

Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A.Q.N., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., Bortel, W. Van, Hendrickx, G., Schaffner, F., Elyazar, I.R., Teng, H.J., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., William Wint, G.R., Golding, N. & Hay, S.I., 2015, ‘The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus’, eLife, 4(JUNE2015).

Soo, K.M., Khalid, B., Ching, S.M. & Chee, H.Y., 2016, ‘Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections’, PLoS ONE, 11(5).

Stanaway, J.D., Shepard, D.S., Undurraga, E.A., Halasa, Y.A., Coffeng, L.E., Brady, O.J., Hay, S.I., Bedi, N., Bensenor, I.M., Castañeda-Orjuela, C.A., Chuang, T.W., Gibney, K.B., Memish, Z.A., Rafay, A., Ukwaja, K.N., Yonemoto, N. & Murray, C.J.L., 2016, ‘The global burden of dengue: an analysis from the Global Burden of Disease Study 2013’, The Lancet Infectious Diseases, 16(6).

Yavari Nejad, F. & Varathan, K.D., 2021, ‘Identification of significant climatic risk factors and machine learning models in dengue outbreak prediction’, BMC Medical Informatics and Decision Making, 21(1).

Yulianingsih, S., Kurnia, D. & Julia, J., 2020, ‘Pemetaan Sistematik dalam Topik Kajian Problem Posing Berdasarkan Analisis Bibliometrik’, Jurnal Pena Ilmiah, 3(2).

Zupic, I. & Cater, T., 2015, ‘Bibliometric methods in management and organization. Organizational Research methods’, Goldsmiths Research Online, 18(3).

Downloads

Published

2025-04-25

How to Cite

Dewi, M., & Kristin, J. (2025). Penerapan Kecerdasan Buatan dalam Penelitian Demam Berdarah: Analisis Bibliometrik: Applying Artificial Intelligence in Dengue Fever Research: A Bibliometric Analysis. Jurnal Surya Medika (JSM), 11(1), 222–227. https://doi.org/10.33084/jsm.v11i2.9755