Antioxidant, Antidiabetic, and Anti-obesity Potential of Ipomoea reptans Poir Leaves

Hendrik Kurniawan (1) , Ermenilda Sonia Dacamis (2) , Adelina Simamora (3) , Priscilla Sari Dianauli Lumban Tobing (4) , Ali Hanapiah (5) , Adit Widodo Santoso (6)
(1) Universitas Kristen Krida Wacana , Indonesia
(2) Universitas Kristen Krida Wacana , Indonesia
(3) Universitas Kristen Krida Wacana , Indonesia
(4) Universitas Kristen Krida Wacana , Indonesia
(5) Universitas Kristen Krida Wacana , Indonesia
(6) Universitas Kristen Krida Wacana , Indonesia


Ipomoea reptans Poir or kangkung is a popular leafy vegetable, a favorite to people in Asian countries. However, limited information is available on their bioactivities. In the present study, the antioxidant, antidiabetic, and anti-obesity potential of I. reptans leaves were investigated. Different fractions (ethanol, ethyl acetate, and hexane) of I. reptans leaves were evaluated for their scavenging activity on DPPH radicals, whereas their reducing potential was investigated by cupric reducing antioxidant capacity (CuPRAC), total antioxidant, and reducing power assays. The antidiabetic potential was investigated by their inhibition effect on α-glucosidase. Total phenolic and flavonoid contents of I. reptans leaves were solvent dependent. Ethyl acetate contained the highest phenolic content, followed by ethanol and hexane fractions. However, for flavonoid content, the order was ethanol > ethyl acetate > hexane. All fractions showed DPPH scavenging activity in a concentration-dependent manner, with activities weaker than standards ascorbic acid and BHT, in the order of ethanol > ethyl acetate > hexane. All fractions showed reducing capacity, but only hexane and ethanol fractions of I. reptans leaves showed inhibition on α-glucosidase, with hexane showed more potent inhibition compared to acarbose. The study also found that fractions of I. reptans inhibit lipase and trypsin, enzymes related to lipid metabolism. Findings in this study offer a prospect for I. reptans leaves as a functional food source for antioxidant, antidiabetic, and anti-obesity purposes.

Full text article

Generated from XML file


Aktumsek, A., Zengin, G., Guler, G.O., Cakmak, Y.S., & Duran, A. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food and Chemical Toxicology, 55, 290-296. doi:10.1016/j.fct.2013.01.018
American Diabetes Association. (2009). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 32(Suppl 1), S62-S67. doi:10.2337/dc09-S062
Ayala, A., Muñoz, F.M., & Argüelles, S. (2014). Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longetivity, 2014, 360438. doi:10.1155/2014/360438
Carter, P., Gray, L.J., Troughton, J., Khunti, K., & Davies, M.J. (2010). Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ, 341, c4229. doi:10.1136/bmj.c4229
Choirunnisa, A.R., Fidrianny, I., & Ruslan, K. (2016). Comparison of Five Antioxidant Assays for Estimating Antioxidant Capacity from Three Solanum sp. Extracts. Asia Journal of Pharmaceutical and Clinical Research, 9(Suppl 2), 123-128. doi:10.22159/ajpcr.2016.v9s2.13155
Choudhury, H., Pandey, M., Hua, C.K., Mun, C.S., Jing, J.K., Kong, L., Ern, L.Y., Ashraf, N.A., Kit, S.W., Yee, T.S., Pichika, M.R., Gorain, B., & Kesharwani, P. (2017). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine, 8(3), 361-376. doi:10.1016/j.jtcme.2017.08.012
Dasgupta, N. & De, B. (2007). Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chemistry, 101(2), 471-474. doi:10.1016/j.foodchem.2006.02.003
Dewanjee, S., Dua, T.K., Khanra, R., Das, S., Barma, S., Joardar, S., Bhattacharjee, N., Zia-Ul-Haq, M., & Jaafar, H.Z.E. (2015). Water Spinach, Ipomoea aquatica (Convolvulaceae), Ameliorates Lead Toxicity by Inhibiting Oxidative Stress and Apoptosis. PLoS One, 10(10), e0139831. doi:10.1371/journal.pone.0139831
Giacco, F. & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058-1070. doi:10.1161/CIRCRESAHA.110.223545
Gülçin, I., Elmastaş, M., & Aboul-Enein, H.Y. (2012). Antioxidant activity of clove oil – A powerful antioxidant source. Arabian Journal of Chemistry, 5(4), 489-499. doi:10.1016/j.arabjc.2010.09.016
Gupta, M., Saxena, S., & Goyal, D. (2015). Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(1), 15-21. doi:10.3109/14756366.2013.871007
Hayati, F., Chabib, L., & Darma, D.D. (2018). Antihyperglycemia activity of self-nano emulsifying drug-delivery systems (SNEDDS) of Ipomoea reptans, Poir leaf ethanolic extract in zebrafish (Danio rerio). AIP Conference Proceedings, 2026, 020026. doi:10.1063/1.5064986
Hayati, F., Widyarini, S., Lanova, L., & Wijayanti, M. (2017). The effect of Ipomoea reptans poir ethanolic extract on the histopathological parameters of pancreas in streptozotocin-induced diabetic rats. AIP Conference Proceedings, 1823, 020046. doi:10.1063/1.4978119
Khatoon, M., Islam, E., Islam, R., Rahman, A.A., Alam, A.H.M.K., Khondkar, P., Rashid, M., & Parvin, S. (2013). Estimation of total phenol and in vitro antioxidant activity of Albizia procera leaves. BMC Research Notes, 6, 121. doi:10.1186/1756-0500-6-121
Kurutas, E.B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15, 71. doi:10.1186/s12937-016-0186-5
de Lima, V.C.O., Piuvezam, G., Maciel, B.L.L., & Morais, A.H.A. (2019). Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 405-419. doi:10.1080/14756366.2018.1542387
Limanto, A., Simamora, A., Santoso, A.W., & Timotius, K.H. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), 67-74. doi:10.21705/mcbs.v3i2.60
Ling, Y.Y., Fun, P.S., Yeop, A., Yusoff, M.M., & Gimbun, J. (2019). Assessment of Maceration, Ultrasonic and Microwave Assisted Extraction for Total Phenolic Content, Total Flavonoid Content and Kaempferol Yield from Cassia alata via Microstructures Analysis. Materials Today: Proceedings, 19(4), 1273-1279. doi:10.1016/j.matpr.2019.11.133
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Review, 4(8), 118-126. doi:10.4103/0973-7847.70902
Madani, I., Majbour, M., & Sinada, F. (2015). Morphological variation of four Ipomoea species from Sudan. European Academic Research, 3(7), 8240-8249.
Marxen, K., Vanselow, K.H., Lippemeier, S., Hintze, R., Ruser, A., & Hansen, U.P. (2007). Determination of DPPH Radical Oxidation Caused by Methanolic Extracts of Some Microalgal Species by Linear Regression Analysis of Spectrophotometric Measurements. Sensors, 7(10), 2080-2095. doi:10.3390/s7102080
McLaughin, C.L., Peikin, S.R., & Baile, C.A. (1983). Trypsin inhibitor effects on food intake and weight gain in Zucker rats. Physiology and Behavior, 31(4), 487-491. doi:10.1016/0031-9384(83)90071-9
Miedzianka, J., Pęksa, A., Nemś, A., Drzymała, K., Zambrowicz, A., & Kowalczewski, P. (2020). Trypsin inhibitor, antioxidant and antimicrobial activities as well as chemical composition of potato sprouts originating from yellow- and colored-fleshed varieties. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 55(1), 42-51. doi:10.1080/03601234.2019.1657764
Mohora, M., Greabu, M., Muscurel, C., Duta, C., & Totan, A. (2007). The Sources and The Targets of Oxidative Stress in The Etiology of Diabetic Complications. Romanian Journal of Biophysics, 17(2), 63-84.
Paixão, N., Perestrelo, R., Marques, J.C., & Câmara, J.S. (2007). Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chemistry, 105(1), 204-214. doi:10.1016/j.foodchem.2007.04.017
Phaniendra, A., Jestadi, D.B., & Periyasamy, L. (2015). Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Biochemistry, 30(1), 11-26. doi:10.1007/s12291-014-0446-0
Prasad, K.N., Divakar, S., Shivamurthy, G.R., & Aradhya, S.M. (2005). Isolation of a free radical‐scavenging antioxidant from water spinach (Ipomoea aquatica Forsk). Journal of the Science of Food and Agriculture, 85(9), 1461-1468. doi:10.1002/jsfa.2125
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. doi:10.1006/abio.1999.4019
Rahman, M.M. & Parkpain, P. (2004). Distribution of Arsenic in Kangkong (Ipomoea reptans). ScienceAsia, 30, 255-259. doi:10.2306/scienceasia1513-1874.2004.30.255
Rajan, L., Palaniswamy, D., & Mohankumar, S.K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155, 104681. doi:10.1016/j.phrs.2020.104681
Saha, S. & Verma, R. (2012). Inhibitory potential of traditional herbs on α-amylase activity. Pharmaceutical Biology, 50(3), 326-331. doi:10.3109/13880209.2011.608075
Saha, P., Selvan, V.T., Mondal, S.K., Mazumder, U., & Gupta, M. (2008). Antidiabetic and antioxidant activity of methanol extract of Ipomoea reptans Poir aerial parts in streptozotocin induced diabetic rats. Pharmacologyonline, 1, 409-421.
el-Sayed, M.M., Abdel-Hameed, E.S.S., Ahmed, W.S., & el-Wakil, E.A. (2008). Non-phenolic antioxidant compounds from Buddleja Asiatica. Zeitschrift für Naturforschung - Section C Journal of Biosciences, 63(7-8), 483-491. doi:10.1515/znc-2008-7-803
Shukla, S., Park, J., Kim, D.H., Hong, S.Y., Lee, J.S., & Kim, M. (2016). Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water-soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control, 59, 854-861. doi:10.1016/j.foodcont.2015.07.003
Simamora, A., Santoso, A.W., & Timotius, K.H. (2019). α-Glucosidase Inhibitory Effect of Fermented Fruit Juice of Morinda citrifolia L and Combination Effect with Acarbose. Current Research in Nutrition and Food Science, 7(1). 218-226. doi:10.12944/CRNFSJ.7.1.21
Simamora, A., Santoso, A.W., & Timotius, K.H. (2018a). Bioactivities of Methanol and Ethyl Acetate Mace Extracts of Myristica fragrans Houtt. Pharmacognosy Communications, 8(3), 103-107. doi:10.5530/pc.2018.3.22
Simamora, A., Paramita, L., Azreen, N., Santoso, A.W., & Timotius, K.H. (2018b). In Vitro Antidiabetic and Antioxidant Activities of Aqueous Extract from the Leaf and Fruit of Psidium guajava L. Indonesian Biomedical Journal, 10(2), 156-164. doi:10.18585/inabj.v10i2.402
Srisupap, S. & Chaicharoenpong, C. (2021). In vitro antioxidant and antityrosinase activities of Manilkara kauki. Acta Pharmaceutica, 71(1), 153-162. doi:10.2478/acph-2021-0009
Stokes, A., Collins, J.M., Grant, B.F., Scamuffa, R.F., Hsiao, C.W., Johnston, S.S., Ammann, E.M., Manson, J.E., & Preston, S.H. (2018). Obesity Progression Between Young Adulthood and Midlife and Incident Diabetes: A Retrospective Cohort Study of U.S. Adults. Diabetes Care, 41(5), 1025-1031. doi:10.2337/dc17-2336
Tan, B.L., Norhaizan, M.E., Liew, W.P.P., & Rahman, H.S. (2018). Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Frontiers in Pharmacology, 9, 1162. doi:10.3389/fphar.2018.01162
van’t Veer, P., Jansen, M.C., Klerk, M., & Kok, F.J. (2000). Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutrition, 3(1), 103-107. doi:10.1017/s1368980000000136
Vieira, R., Souto, S.B., Sánchez-López, E., Machado, A.L., Severino, P., Jose, S., Santini, A., Fortuna, A., Gaecia, M.L., Silva, A.M., & Souto, E.B. (2019). Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome—Review of Classical and New Compounds: Part-I. Pharmaceuticals, 12(4), 152. doi:10.3390/ph12040152
Vijayaraghavan, P. & Vincent, S.G.P. (2013). A simple method for the detection of protease activity on agar plates using bromocresol green dye. Journal of Biochemical Technology, 4(3), 628-630.
Yin, Z., Zhang, W., Feng, F., Zhang, Y., & Kang, W. (2014). α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 3(3-4), 136-174. doi:10.1016/j.fshw.2014.11.003


Hendrik Kurniawan
Ermenilda Sonia Dacamis
Adelina Simamora (Primary Contact)
Priscilla Sari Dianauli Lumban Tobing
Ali Hanapiah
Adit Widodo Santoso
Kurniawan H, Dacamis ES, Simamora A, Tobing PSDL, Hanapiah A, Santoso AW. Antioxidant, Antidiabetic, and Anti-obesity Potential of Ipomoea reptans Poir Leaves. Borneo J Pharm [Internet]. 2020Nov.30 [cited 2024May24];3(4):216-2. Available from:

Article Details