Identification of the Glimepiride and Metformin Hydrochloride Physical Interaction in Binary Systems

Fitrianti Darusman (1) , Taufik Muhammad Fakih (2) , Gina Fuji Nurfarida (3)
(1) Universitas Islam Bandung , Indonesia
(2) Universitas Islam Bandung , Indonesia
(3) Universitas Islam Bandung , Indonesia


Glimepiride is often combined with metformin HCl as an oral antidiabetic in type II diabetes mellitus, which provides a complementary and synergistic effect with multiple targets for insulin secretion. Glimepiride includes class II of BCS, which solubility practically insoluble in water but high permeability, which will impact the drug's small bioavailability. In contrast, metformin HCl includes class III of BCS, which has a high solubility in water, but low permeability is absorbed approximately 50-60% in the digestive tract given orally. The co-crystallization method can be used to improve the glimepiride solubility properties and the permeability properties of metformin HCl by interrupting glimepiride with metformin HCl physically. This study aims to identify the physical interactions between glimepiride and metformin HCL using a thermal analysis of Differential Scanning Calorimetry (DSC) and then confirmed by a computational approach. Identifying the physical interactions between glimepiride and metformin HCL was carried out by plotting the melting points generated from the endothermic peaks of the DSC thermogram at various compositions versus the mole ratios of the two were further confirmed by the computational approach using PatchDock. The results of the phase diagram analysis of the binary system between glimepiride and metformin HCl show a congruent pattern, which indicates the formation of co-crystal or molecular compounds at a 1 : 1 mole ratio at 228°C. Computational approach results showed that the interaction between glimepiride and metformin HCl did not form new compounds but heterosinton formation that was stable in molecular dynamics simulations.

Full text article

Generated from XML file


1. Chaudhury A, Duvoor C, Dendi VSR, Kraleti S, Chada A, Ravilla R, et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol. 2017;8:6. doi:10.3389/fendo.2017.00006
2. Bian X, Jiang L, Gan Z, Guan X, Zhang L, Cai L, et al. A Glimepiride-Metformin Multidrug Crystal: Synthesis, Crystal Structure Analysis, and Physicochemical Properties. Molecules. 2019;24(20):3786. doi:10.3390/molecules24203786
3. Mady OY, Donia AA, Al-Shoubki AA, Qasim W. Paracellular Pathway Enhancement of Metformin Hydrochloride via Molecular Dispersion in Span 60 Microparticles. 2019;10:713. doi:10.3389/fphar.2019.00713
4. Ahmed R. A simple and convenient method for the simultaneous in vitro study of metformin and glimepiride tablets. Pak J Pharm Sci. 27(6):1939-43.
5. Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts. 2018;8(4):305-20. doi:10.15171/bi.2018.33
6. Thayyil AR, Juturu T, Nayak S, Kamath S. Pharmaceutical Co-Crystallization: Regulatory Aspects, Design, Characterization, and Applications. Adv Pharm Bull. 2020;10(2):203-12. doi:10.34172/apb.2020.024
7. Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-Crystals: A Novel Approach to Modify Physicochemical Properties of Active Pharmaceutical Ingredients. Indian J Pharm Sci. 2009;71(4):359-70. doi:10.4103/0250-474X.57283
8. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics. 2018;10(1):18. doi:10.3390/pharmaceutics10010018
9. Medarević D, Ibrić S, Vardaka E, Mitrić M, Nikolakakis I, Kachrimanis K. Insight into the Formation of Glimepiride Nanocrystals by Wet Media Milling. Pharmaceutics. 2020;12(1):53. doi:10.3390/pharmaceutics12010053
10. Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res. 2013;30(1):70-80. doi:10.1007/s11095-012-0850-1
11. Poli G, Granchi C, Rizzolio F, Tuccinardi T. Application of MM-PBSA Methods in Virtual Screening. Molecules. 2020;25(8):1971. doi:10.3390/molecules25081971
12. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21(39):395502. doi:10.1088/0953-8984/21/39/395502
13. Fakih TM, Dewi ML, Syahroni E. Magainin as an Antiviral Peptide of SARS-CoV-2 Main Protease for Potential Inhibitor: An In Silico Approach. Biogenesis Jurnal Ilmiah Biologi. 2020;8(1):104-10. doi:10.24252/bio.v8i1.13871
14. Fakih TM, Dewi ML, Syahroni E. Prediksi Stabilitas Mucroporin sebagai Kandidat Obat Berbasis Peptida melalui Simulasi Dinamika Molekular. JSFK (Jurnal Sains Farmasi & Klinis). 2020;7(3):210-7. doi:10.25077/jsfk.7.3.210-217.2020
15. Muttaqin FZ, Fakih TM, Muhammad HN. Molecular Docking, Molecular Dynamics, and In Silico Toxicity Prediction Studies of Coumarin, N-Oxalylglycine, Organoselenium, Organosulfur, and Pyridine Derivatives as Histone Lysine Demethylase Inhibitors. Asian J Pharm Clin Res. 2017;10(12):212-5. doi:10.22159/ajpcr.2017.v10i12.19348
16. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, et al. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev. 2019;119(16):9478-508. doi:10.1021/acs.chemrev.9b00055
17. Kartasasmita RE, Kurniawan F, Amelia T, Dewi CM, Harmoko, Pratama Y. Determination of Anthraquinone in Some Indonesian Black Tea and Its Predicted Risk Characterization. ACS Omega. 2020;5(32):20162-9. doi:10.1021/acsomega.0c01812
18. Kurniawan F, Miura Y, Kartasasmita RE, Mutalib A, Yoshioka N, Tjahjono DH. In Silico Study, Synthesis, and Cytotoxic Activities of Porphyrin Derivatives. Pharmaceuticals. 2018;11(1):8. doi:10.3390/ph11010008
19. Rycerz L. Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements. J Therm Anal Calorim. 2013;113:231-8. doi:10.1007/s10973-013-3097-0
20. Sekhon BS. Pharmaceutical co-crystals-a review. Ars Pharm. 2009;50(3):99-117.
21. Alhadid A, Mokrushina L, Minceva M. Modeling of Solid-Liquid Equilibria in Deep Eutectic Solvents: A Parameter Study. Molecules. 2019;24(12):2334. doi:10.3390/molecules24122334
22. Vippagunta SR, Wang Z, Hornung S, Krill SL. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J Pharm Sci. 2007;96(2):294-304. doi:10.1002/jps.20754
23. Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv Drug Deliv Rev. 2017;117:25-46. doi:10.1016/j.addr.2017.03.002
24. Kuminek G, Cao F, da Rocha ABdO, Cardoso SG, Rodríguez-Hornedo N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev. 2016;101:143-66. doi:10.1016/j.addr.2016.04.022
25. Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019;20(18):4331. doi:10.3390/ijms20184331
26. Hu G, Ma A, Wang J. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. J Chem Inf Model. 2017;57(4):918-28. doi:10.1021/acs.jcim.7b00139
27. Liu K, Kokubo H. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study. J Chem Inf Model. 2017;57(10):2514-22. doi:10.1021/acs.jcim.7b00412
28. Aldeghi M, Bodkin MJ, Knapp S, Biggin PC. Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study. J Chem Inf Model. 2017;57(9):2203-21. doi:10.1021/acs.jcim.7b00347


Fitrianti Darusman (Primary Contact)
Taufik Muhammad Fakih
Gina Fuji Nurfarida
Darusman F, Fakih TM, Nurfarida GF. Identification of the Glimepiride and Metformin Hydrochloride Physical Interaction in Binary Systems. Borneo J Pharm [Internet]. 2021May30 [cited 2023Sep.26];4(2):110-6. Available from:

Article Details