Compressional Physics of Binary Mixture of Dried Andrographis paniculata and Moringa oleifera Leaves

Johnson Ajeh Isaac (1) , Kokonne Elizabeth Ekere (2) , Ekeh Ezekiel (3) , Isa Hayatu Galadima (4) , Rashida Abdulahi (5) , Ayuba Samali (6)
(1) National Institute for Pharmaceutical Research and Development , Nigeria
(2) National Institute for Pharmaceutical Research and Development , Nigeria
(3) National Institute for Pharmaceutical Research and Development , Nigeria
(4) National Institute for Pharmaceutical Research and Development , Nigeria
(5) National Institute for Pharmaceutical Research and Development , Nigeria
(6) National Institute for Pharmaceutical Research and Development , Nigeria

Abstract

Traditionally, the leafy part of Andrographis paniculata and Moringa oleifera have been widely reported to manage hypertension. Investigation of its pharmacological actions justifies its use. As part of formulation studies to standardize them, this study focused on their compaction and compression properties. Compacts equivalent to 250 mg of A. paniculata and M. oleifera were produced by compressing powders and granules at various compression pressure. Results show that M. oleifera met the WHO limit for ash values. Relative density values for granulated batches were higher, while their moisture content values were lower when compared to those of direct compression. The result from Heckel plots shows that batches deform mainly by plastic flow. For Kawakita plots, values of 1/b show that batches containing microcrystalline cellulose were less cohesive. The plot of tensile strength signifies that granulated batches achieved maximum crushing strength faster at low pressure. Formulations containing maize starch were shown to have higher percent porosity, and granulated batches gave higher values for apparent density-pressure relationship and lower friability values. Tablets produced by the wet granulation method showed better compression and compaction properties than those formulated by direct compression.

Full text article

Generated from XML file

References

1. Sonnergaard JM. Investigation of a new mathematical model for compression of pharmaceutical powders. Eur J Pharm Sci. 2001;14(2):149-57. doi:10.1016/s0928-0987(01)00165-8
2. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2013;4:177. doi:10.3389/fphar.2013.00177
3. Adedokun MO, Ayorinde JO, Odeniyi MA. Compressional, mechanical and release properties of a novel gum in paracetamol tablet formulations. Curr Issues Pharm Medical Sci. 2015;27(3):187-94. doi:10.1515/cipms-2015-0013
4. Hooper D, Clarke FC, Mitchell JC, Snowden MJ. A Modern Approach to the Heckel Equation: The Effect of Compaction Pressure on the Yield Pressure of Ibuprofen and its Sodium Salt. J Nanomed Nanotechnol. 2016;7(3):1000381. doi:10.4172/2157-7439.1000381
5. Haruna F, Apeji YE, Oparaeche C, Oyi AR, Gamlen M. Future J Pharm Sci. 2020;6:35. doi:10.1186/s43094-020-00055-9
6. Thapa P, Lee AR, Choi DH, Jeong SH. Effects of moisture content and compression pressure of various deforming granules on the physical properties of tablets. Powder Technol. 2017;310:97-102. doi:10.1016/j.powtec.2017.01.021
7. Kushram A, Masih SK, Mir SA. Variation of Andrographolide Content in Andrographis paniculata from Different Sites of Balaghat Region of Jabalpur (M.P.). Int J Curr Res Rev. 2017;9(22):1-4. doi:10.7324/IJCRR.2017.9221
8. Hossain MS, Urbi Z, Sule A, Rahman KMH. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. ScientificWorldJournal. 2014;2014:274905. doi:10.1155/2014/274905
9. Jarukamjorn K, Nemoto N. Pharmacological Aspects of Andrographis paniculata on Health and Its Major Diterpenoid Constituent Andrographolide. J Health Sci. 2008;54(4):370-81. doi:10.1248/jhs.54.370
10. Zhou J, Zhang S, Ong CN, Shen HM. Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem Pharmacol. 2006;72(2):132-44. doi:10.1016/j.bcp.2006.04.019
11. Awang K, Abdullah NH, Hadi AHA, Fong YS. Cardiovascular activity of labdane diterpenes from Andrographis paniculata in isolated rat hearts. J Biomed Biotechnol. 2012;2012:876458. doi:10.1155/2012/876458
12. Zhang CY, Tan BK. Hypotensive activity of aqueous extract of Andrographis paniculata in rats. Clin Exp Pharmacol Physiol. 1996;23(8):675-8. doi:10.1111/j.1440-1681.1996.tb01756.x
13. Das S, Periyasamy R, Pandey KN. Activation of IKK/NF-κB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice. Physiol Genomics. 2012;44(7):430-42. doi:10.1152/physiolgenomics.00147.2011
14. Mshelbwala K, Ofokansi KC, Kenechukwu FC. Antihypertensive Effect of Methanol Leaf Extract of Andrographis paniculata in Experimental Cats. Afr J Pharm Res Dev. 2013;5(2):109-20.
15. Jayakumar T, Hsieh CY, Lee JJ, Sheu JR. Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evid Based Complement Alternat Med. 2013;2013:846740. doi:10.1155/2013/846740
16. Vergara-Jimenez M, Almatrafi MM, Fernandez ML. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants. 2017;6(4):91. doi:10.3390/antiox6040091
17. Padayachee B, Baijnath H. An overview of the medicinal importance of Moringaceae. J Med Plants Res. 2012;6(48):5831-9. doi:10.5897/JMPR12.1187
18. Woldekidan S, Mulu A, Ergetie W, Teka F, Meressa A, Tadele A, et al. Evaluation of Antihyperglycemic Effect of Extract of Moringa stenopetala (Baker f.) Aqueous Leaves on Alloxan-Induced Diabetic Rats. Diabetes Metab Syndr Obes. 2021;14:185-92. doi:10.2147/DMSO.S266794
19. Acuram LK, Hernandez CLC, Popovich D. Anti-hypertensive effect of Moringa oleifera Lam. Cogent Biol. 2019;5(1):1596526. doi:10.1080/23312025.2019.1596526
20. Aekthammarat D, Pannangpetch P, Tangsucharit P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine. 2019;54:9-16. doi:10.1016/j.phymed.2018.10.023
21. George GO, Ajayi OB, Oyemike AA. Effect of Moringa oleifera leaf aqueous extract on intraocular and blood pressure of normotensive adults in Edo State, Nigeria. J Niger Optometric Assoc. 2018;20(2):75-81.
22. Martins E, Christianah I, Amaka I, Olubunmi O. Effects of some channelling agents on the compaction properties of the mixed stem bark extracts of Anogeissus leiocarpus and Prosopis africana. J Med Herbs. 2017;8(1):9-14. doi:10.18869/JHD.2017.9
23. Yusof YA, Hamid AAA, Ahmad S, Razak NA, Ling CN, Mohamed S. A Comparison of the Direct Compression Characteristics of Andrographis paniculata, Eurycoma longifolia Jack, and Orthosiphon stamineus Extracts for Tablet Development. In: Ghrib T, editor. New Tribological Ways. London (UK): IntechOpen; 2011. p. 219-32. doi:10.5772/14967
24. Yusof YA, Chin NL, Anuar MS, Ahmad S, Abdullah R, Nor CRM, et al. Tabletting characteristics of the selected Malaysian herbs. J Med Plants Res. 2012;6(43):5570-81. doi:10.5897/JMPR.9001177
25. Zheng Y, Zhu F, Lin D, Wu J, Zhou Y, Mark B. Optimization of formulation and processing of Moringa oleifera and spirulina complex tablets. Saudi J Biol Sci. 2017;24(1):122-6. doi:10.1016/j.sjbs.2016.08.017
26. Maurya H, Kumar T. Formulation, Standardization, and Evaluation of Polyherbal Dispersible Tablet. Int J Appl Pharm. 2019;11(1):158-67. doi:10.22159/ijap.2019v11i1.30113
27. Rodgers PT. Combination drug therapy in hypertension: a rational approach for the pharmacist. J Am Pharm Assoc. 1998;38(4):469-79. doi:10.1016/s1086-5802(16)30348-5
28. Maneesai P, Prasarttong P, Bunbupha S, Kukongviriyapan U, Kukongviriyapan V, Tangsucharit P, et al. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in L-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT₁R Expression. Nutrients. 2016;8(3):122. doi:10.3390/nu8030122
29. Sundström J, Gulliksson G, Wirén M. Synergistic effects of blood pressure-lowering drugs and statins: systematic review and meta-analysis. BMJ Evid Based Med. 2018;23(2):64-9. doi:10.1136/bmjebm-2017-110888
30. Kadam VB, Momin RK, Wadikar MS, Tambe SS. Determination of water soluble Ash values of some Medicinal Plants of Genus Sesbania. J Pharm Biol Res. 2013;1(1):1-4.
31. Chattoraj S, Sun CC. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression. J Pharm Sci. 2018;107(4):968-74. doi:10.1016/j.xphs.2017.11.023
32. Heckel RW. Density-pressure relationship in powder compaction. Trans Met Soc Aime. 1961;221:671-5.
33. Kawakita K, Lüdde KH. Some considerations on powder compression equations. Powder Technol. 1971. 4(2):61-8. doi:10.1016/0032-5910(71)80001-3
34. Liu LX, Marziano I, Bentham AC, Litster JD, White ET, Howes T. Effect of particle properties on the flowability of ibuprofen powders. Int J Pharm. 2008;362(1-2):109-17. doi:10.1016/j.ijpharm.2008.06.023
35. Fassihi AR. Kanfer I. Effect of Compressibility and Powder Flow Properties on Tablet Weight Variation. Drug Dev Ind Pharm. 1986;12(11-13):1947-66. doi:10.3109/03639048609042619
36. Akhgari A, Sadeghi H, Dabbagh MA. Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method. Iran J Basic Med Sci. 2014;17(8):553-9.
37. Silva JPS, Splendor D, Gonçalves IMB, Costa P, Lobo JMS. Note on the Measurement of Bulk Density and Tapped Density of Powders According to the European Pharmacopeia. AAPS PharmSciTech. 2013;14(3):1098-100. doi:10.1208/s12249-013-9994-5
38. Shanmugam S. Granulation techniques and technologies: recent progresses. Bioimpacts. 2015;5(1):55-63. doi:10.15171/bi.2015.04
39. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. Int J Pharm. 2014;473(1-2):64-72. doi:10.1016/j.ijpharm.2014.06.055
40. Persson AS, Ahmed H, Velaga S, Alderborn G. Powder Compression Properties of Paracetamol, Paracetamol Hydrochloride, and Paracetamol Cocrystals and Coformers. J Pharm Sci. 2018;107(7):1920-7. doi:10.1016/j.xphs.2018.03.020
41. Dominik M, Vraníková B, Svačinová P, Elbl J, Pavloková S, Prudilová BB, et al. Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®. Pharmaceutics. 2021;13(9):1486. doi:10.3390/pharmaceutics13091486
42. Emeje MO, Isimi CY, Oqua DAN, Kunle OO. Some compaction characteristics of the hot water leaf extract og Nauclea latifiola: a potential antimalarial agent. J Herb Pharmacother. 2005;5(4):23-30.
43. Szumilo M, Belniak P, Swiader K, Holody E, Poleszak E. Assessment of physical properties of granules with paracetamol and caffeine. Saudi Pharm J. 2017;25(6):900-5. doi:10.1016/j.jsps.2017.02.009
44. Mohan S. Compression physics of pharmaceutical powders: A review. Int J Pharm Sci Res. 2012;3(6):1580-92.
45. Osamura T, Takeuchi Y, Onodera R, Kitamura M, Takahashi Y, Tahara K, et al. Formulation design of granules prepared by wet granulation method using a multi-functional single-punch tablet press to avoid tableting failures. Asian J Pharm Sci. 2018;13(2):113-9. doi:10.1016/j.ajps.2017.08.002
46. Doktorova M, LeVine MV, Khelashvili G, Weinstein H. A New Computational Method for Membrane Compressibility: Bilayer Mechanical Thickness Revisited. Biophys J. 2019;116(3):487-502. doi:10.1016/j.bpj.2018.12.016
47. Gbenga BL, Taiwo Y. Studies of the Effect of Storage Conditions on Some Pharmaceutical Parameters of Powders and Tablets. Dhaka Univ J Pharm Sci. 2015;14(2):147-51. doi:10.3329/dujps.v14i2.28503
48. Patra CN, Pandit HK, Singh SP, Devi MV. Applicability and Comparative Evaluation of Wet Granulation and Direct Compression Technology to Rauwolfia serpentina Root Powder: A Technical Note. AAPS PharmSciTech. 2008;9(1):100-4. doi:10.1208/s12249-007-9015-7
49. Mahours GM, Shaaban DEZ, Shazly GA, Auda SH. The effect of binder concentration and dry mixing time on granules, tablet characteristics and content uniformity of low dose drug in high shear wet granulation. J Drug Deliv Sci Technol. 2017;39:192-9. doi:10.1016/j.jddst.2017.03.014

Authors

Johnson Ajeh Isaac
johnsonisaac11@yahoo.com (Primary Contact)
Kokonne Elizabeth Ekere
Ekeh Ezekiel
Isa Hayatu Galadima
Rashida Abdulahi
Ayuba Samali
1.
Isaac JA, Ekere KE, Ezekiel E, Galadima IH, Abdulahi R, Samali A. Compressional Physics of Binary Mixture of Dried Andrographis paniculata and Moringa oleifera Leaves. Borneo J Pharm [Internet]. 2021Nov.30 [cited 2024Apr.19];4(4):333-44. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/2544

Article Details