Cancer Statistics and Anticancer Potential of Peganum harmala Alkaloids: A Review

Tohfa Nasibova (1)
(1) Azerbaijan Medical University , Azerbaijan

Abstract

Cancer is one of the most common diseases in the world. Although it develops in various organs and tissues, some species maintain a stable position in the ranking. Although the cancer causes are different, the specific grounds for each type are also noted. Sometimes the increase in incidents and mortality is associated with geographical reasons. Increases in statistics, expensive and chemotherapeutic methods focus on plant-based substances. One of such potential plants is Peganum harmala, which contains alkaloids such as harmine, harmaline, harmol, and harmalol. The effects of these compounds on many cancer cells have been tested, and positive results have been obtained. This fact reinforces the claim that more in-depth research on noted alkaloids is needed.

Full text article

Generated from XML file

References

1. Karwowska M, Kononiuk A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants. 2020;9(3):241. doi:10.3390/antiox9030241
2. Ferysiuk K, Wójciak KM. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants. 2020;9(8):711. doi:10.3390/antiox9080711
3. Thompson LA, Darwish WS. Environmental Chemical Contaminants in Food: Review of a Global Problem. J Toxicol. 2019;2345283. doi:10.1155/2019/2345283
4. Mons U, Gredner T, Behrens G, Stock C, Brenner H. Cancers Due to Smoking and High Alcohol Consumption. Dtsch Arztebl Int. 2018;115(35-36):571-7. doi:10.3238/arztebl.2018.0571
5. Rumgay H, Shield K, Charvat H, Ferrari P, Sornpaisarn B, Obot I, et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 2021;22(8):1071-80. doi:10.1016/s1470-2045(21)00279-5
6. Wu S, Zhu W, Thompson P, Hannun YA. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun. 2018;9(1):3490. doi:10.1038/s41467-018-05467-z
7. Tunbull C, Sud A, Houlston RS. Publisher Correction: Cancer genetics, precision prevention and a call to action. Nat Genet. 2019;51(1):196. doi:10.1038/s41588-018-0326-2
8. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Corrigendum: Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol. 2020;11:175. doi:10.3389/fphar.2020.00175
9. Goldstein DA, Clark J, Tu Y, Zhang J, Fang F, Goldstein R, et al. A global comparison of the cost of patented cancer drugs in relation to global differences in wealth. Oncotarget. 2017;8(42):71548-55. doi:10.18632/oncotarget.17742
10. Shabani SHS, Tehrani SSH, Rabiei Z, Enferadi ST, Vannozzi GP. Peganum harmala L.'s anti-growth effect on a breast cancer cell line. Biotechnol Rep. 2015;8:138-43. doi:10.1016/j.btre.2015.08.007
11. Tehrani SSH, Shabani SHS, Enferadi ST, Rabiei Z. Growth Inhibitory Impact of Peganum harmala L. on Two Breast Cancer Cell Lines. Iran J Biotechnol. 2014;12(1):8-14. doi:10.5812/IJB.18562
12. Pratama MRF, Nasibova TA, Pratiwi D, Kumar P, Garaev EA. Peganum harmala and its alkaloids as dopamine receptor antagonists: in silico study. Biointerface Res Appl Chem. 2021;11(3):10301-16. doi:10.33263/BRIAC113.1030110316
13. Ozlü T, Bülbül Y. Smoking and lung cancer. Tuberk Toraks. 2005;53(2):200-9.
14. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71(3):209-49. doi:10.3322/caac.21660
15. Shah SC, Kayamba V, Peek Jr RM, Heimburger D. Cancer Control in Low- and Middle-Income Countries: Is It Time to Consider Screening? J Glob Oncol. 2019;5:1-8. doi:10.1200/jgo.18.00200
16. Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated projection of us cancer incidence and death to 2040. JAMA Netw Open. 2021;4(4):e214708. doi:10.1001/jamanetworkopen.2021.4708
17. Rahman R, Asombang AW, Ibdah JA. Characteristics of gastric cancer in Asia. World J Gastroenterol. 2014;20(16):4483-90. doi:10.3748/wjg.v20.i16.4483
18. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019;14(1):26-38. doi:10.5114/pg.2018.80001
19. Msyamboza KP, Phiri T, Sichali W, Kwenda W, Kachale F. Cervical cancer screening uptake and challenges in Malawi from 2011 to 2015: retrospective cohort study. BMC Public Health. 2016;16(1):806. doi:10.1186/s12889-016-3530-y
20. Cumberbatch MGK, Jubber I, Black PC, Esperto F, Figueroa JD, Kamat AM, et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur Urol. 2018;74(6):784-95. doi:10.1016/j.eururo.2018.09.001
21. Gangadi M, Kalpourtzi N, Gavana M, Vantarakis A, Chlouverakis G, Hadjichristodoulou C, et al. Prevalence of tobacco smoking and association with other unhealthy lifestyle risk factors in the general population of Greece: Results from the EMENO study. Tob Prev Cessation. 2021;7:61. doi:10.18332/tpc/140242
22. Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D. Epidemiological trends in skin cancer. Dermatol Pract Concept. 2017;7(2):1-6. doi:10.5826/dpc.0702a01
23. Giles GG, Marks R, Foley P. Incidence of non-melanocytic skin cancer treated in Australia. Br Med J. 1988;296(6614):13-7. doi:10.1136/bmj.296.6614.13
24. Gonçalves PH, Uldrick TS, Yarchoan R. HIV-associated Kaposi sarcoma and related diseases. AIDS. 2017;31(14):1903-16. doi:10.1097/qad.0000000000001567
25. Ziegler JL. Endemic Kaposi's sarcoma in Africa and local volcanic soils. Lancet. 1993;342(8883):1348-51. doi:10.1016/0140-6736(93)92252-o
26. Garg A, Chaturvedi P, Gupta PC. A review of the systemic adverse effects of areca nut or betel nut. Indian J Med Paediatr Oncol. 2014;35(1):3-9. doi:10.4103/0971-5851.133702
27. Auluck A, Hislop G, Poh C, Zhang L, Rosin MP. Areca nut and betel quid chewing among South Asian immigrants to Western countries and its implications for oral cancer screening. Rural Remote Health. 2009;9(2):1118.
28. Greenwell M, Rahman PKSM. Medicinal Plants: Their Use in Anticancer Treatment. Int J Pharm Sci Res. 2015;6(10):4103-12. doi:10.13040/ijpsr.0975-8232.6(10).4103-12
29. Lucas DM, Still PC, Pérez LB, Grever MR, Kinghorn AD. Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr Drug Targets. 2010;11(7):812-22. doi:10.2174/138945010791320809
30. Panahi Y, Saadat A, Seifi M, Rajaee M, Butler AE, Sahebkar A. Effects of Spinal-Z in patients with gastroesophageal cancer. J Pharmacopuncture. 2018;21(1):26-34. doi:10.3831/kpi.2018.21.004
31. Mashak B, Hoseinzadeh M, Ehsanpour A, Ghanbaran AR, Vakili M. Evaluation of treatment response and side effects of Spinal-Z in patients with metastatic gastroesophageal adenocarcinoma: a double-blind randomized controlled trial. Jundishapur J Chronic Dis Care. 2017;6(3):e57870. doi:10.5812/jjcdc.57870
32. Nasibova T, Garaev EA. Study of the amino acid composition of Peganum harmala growing in Azerbaijan (in Russian). Chem Plant Raw Mater. 2021;1:121-8. doi:10.14258/jcprm.2021018253
33. Garaev EA, Nasibova T. Mineral analysis of Peganum harmala seeds. In: Proceedings of the IV All-Ukrainian Scientific-Practical Conference of Young Scientists; 2020 Mar 25; National Academy of Agrarian Sciences of Ukraine, Ukraine. Berezotocha, Ukraine: National Academy of Agrarian Sciences of Ukraine; 2020. p. 189.
34. Garaev EA, Nasibova T. Chemical composition of Peganum harmala seed oil. In: Proceedings of the Planta+: Achievements and prospects; 2020 Feb 20-21; Ukraine. Kiev, Ukraine: Kiev Medical University; 2020. p. 12.
35. Nasibova T, Garaev EA. Peganum harmala alkaloids positively affecting pain. Medicina. 2021; 57 (Supplement 1):262.
36. Kartal M, Altun ML, Kurucu S. HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L. J Pharm Biomed Anal. 2003;31(2):263-9. doi:10.1016/s0731-7085(02)00568-x
37. Ding Y, He J, Huang J, Yu T, Shi X, Zhang T, et al. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol. 2019;54(6):1995–2004. doi:10.3892/ijo.2019.4777
38. Yun J. Inhibitory effects of harmine on migration and invasion of human breast cancer cells by regulating notch signaling. Saengyak Hakhoe Chi. 2018;49(4):285-0.
39. Carvalho A, Chu J, Meinguet C, Kiss R, Vandenbussche G, Masereel B, et al. A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. Eur J Pharmacol. 2017;805:25–35. doi:10.1016/j.ejphar.2017.03.034
40. Ma Y, Wink M. The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytother Res. 2010;24(1):146–9. doi:10.1002/ptr.2860
41. Ock CW, Kim GD. Harmine hydrochloride mediates the induction of G2/M cell cycle arrest in breast cancer cells by regulating the MAPKs and AKT/FOXO3a signaling pathways. Molecules. 2021;26(21):6714. doi:10.3390/molecules26216714
42. Bhadra K. Apoptotic induction ability of harmalol and its binding: biochemical and biophysical perspectives. Int J Bioeng Life Sci. 2016;10(12):835-42.
43. Sarkar S, Pandya P, Bhadra K. Sequence specific binding of beta carboline alkaloid harmalol with deoxyribonucleotides: binding heterogeneity, conformational, thermodynamic and cytotoxic aspects. PloS One. 2014;9(9):e108022. doi:10.1371/journal.pone.0108022
44. Filali I., Bouajila J, Znati M, Garah FBE, Jannet HB. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J Enzyme Inhib Med Chem. 2015;30(3):371-6. doi:10.3109/14756366.2014.940932
45. Pavić K, Beus M, Poje G, Uzelac L, Kralj M, Rajić Z. Synthesis and biological evaluation of harmirins, novel harmine–coumarin hybrids as potential anticancer agents. Molecules. 2021;26:6490. doi:10.3390/molecules26216490
46. Li S, Wang A, Gu F, Wang Z, Tian C, Qian Z, et al. Novel harmine derivatives for tumor targeted therapy. Oncotarget. 2015;6(11):8988–9001. doi:10.18632/oncotarget.3276
47. Roshankhah S, Arji Rodsari B, Jalili C, Salahshoor M. the role of harmine in up-regulating P53 gene expression and inducing apoptosis in MCF-7 cell line. Middle East J Cancer. 2020;11(1):34-41. doi:10.30476/mejc.2019.78703.0
48. Berrougui H, Lopez-Lazaro M, Martin-Cordero C, Mamouchi M, Ettaib A, Herrera M. Cytotoxic activity of methanolic extract and two alkaloids extracted from seeds of Peganum harmala L. J Nat Remedies. 2005;5(1):41-5. doi:10.18311/jnr/2005/413
49. Filali I, Belkacem MA, Ben Nejma A, Souchard JP, Ben Jannet H, Bouajila J. Synthesis, cytotoxic, anti-lipoxygenase and anti-acetylcholinesterase capacities of novel derivatives from harmine. J Enzyme Inhib Med Chem. 2016;31(sup1):23-33. doi:10.3109/14756366.2016.1163342
50. Xu JP. Cancer Inhibitors from Chinese Natural Medicines. Boca Raton (FL), US: CRC Press; 2016. p. 463-4. doi:10.1201/9781315366753
51. Nafie E, Lolarga J, Lam B, Guo J, Abdollahzadeh E, Rodriguez S, et al. Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1. PloS One. 2021;16(2):e0247652. doi:10.1371/journal.pone.0247652
52. Ruan S, Jia F, Li J. Potential antitumor effect of harmine in the treatment of thyroid cancer. Evid Based Complement Alternat Med. 2017;2017:9402615. doi:10.1155/2017/9402615
53. Uhl KL, Schultz CR, Geerts D, Bachmann AS. Harmine, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor induces caspase-mediated apoptosis in neuroblastoma. Cancer Cell Int. 2018;18:82. doi:10.1186/s12935-018-0574-3
54. Liu J, Li Q, Liu Z, Lin L, Zhang X, Cao M, et al. Harmine induces cell cycle arrest and mitochondrial pathway-mediated cellular apoptosis in SW620 cells via inhibition of the Akt and ERK signaling pathways. Oncol Rep. 2016;35(6):3363–70. doi:10.3892/or.2016.4695
55. Ding Q, Wang Z, Ma K, Chen Q. Harmine induces gastric cancer cell apoptosis through the ROSmediated PI3K/AKT signaling pathway. Curr Signal Transduct Ther. 2015;10(2):112-8. doi:10.2174/1574362410666150625190713
56. Li C, Wang Y, Wang C, Yi X, Li M, He X. Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells. Phytomedicine. 2017;28:10-8. doi:10.1016/j.phymed.2017.02.008
57. Wang Y, Wang C, Jiang C., Zeng H, He X. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells. Sci Rep. 2015;5:18613. doi:10.1038/srep18613
58. Zhang P, Huang CR, Wang W, Zhang XK, Chen JJ, Wang JJ, et al. Harmine hydrochloride triggers G2 phase arrest and apoptosis in MGC-803 cells and SMMC-7721 cells by upregulating p21, activating Caspase-8/Bid, and downregulating ERK/Bad pathway. Phytother Res. 2016;30(1):31–40. doi:10.1002/ptr.5497
59. Tarpley M, Oladapo HO, Strepay D, Caligan TB, Chdid L, Shehata H, et al. Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies. Eur J Pharm Sci. 2021;162:105821. doi:10.1016/j.ejps.2021.105821
60. Frédérick R, Bruyère C, Vancraeynest C, Reniers J, Meinguet C, Pochet L, et al. Novel trisubstituted harmine derivatives with original in vitro anticancer activity. J Med Chem. 2012;55(14):6489–501. doi:10.1021/jm300542e
61. Shehata H, Tarpley M, Oladapo HO, Strepay D, Roques JR, Onyenwoke RU, et al. Abstract A138: Profiling of harmine and select analogs as differential inhibitors of DYRK1A and monoamine oxidase A: Exploring the potential for anti-cancer efficacy and minimizing off-target activity. Mol Cancer Ther. 2019;18(12_Suppl):A138. doi:10.1158/1535-7163.TARG-19-A138
62. Zhang Y, Shi X, Xie X, Laster KV, Pang M, Liu K, et al. Harmaline isolated from Peganum harmala suppresses growth of esophageal squamous cell carcinoma through targeting mTOR. Phytother Res. 2021;35(11):6377-88. doi:10.1002/ptr.7289
63. Wu LW, Zhang JK, Rao M, Zhang ZY, Zhu HJ, Zhang C. Harmine suppresses the proliferation of pancreatic cancer cells and sensitizes pancreatic cancer to gemcitabine treatment. Onco Targets Ther. 2019;12:4585–93. doi:10.2147/ott.s205097
64. Chen Q, Chao R, Chen H, Hou X, Yan H, Zhou S, et al. Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. Int J Cancer. 2005;114(5):675-82. doi:10.1002/ijc.20703
65. Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, et al. Discovery of harmaline as a potent inhibitor of sphingosine kinase-1: a chemopreventive role in lung cancer. ACS Omega. 2020;5(34):21550-60. doi:10.1021/acsomega.0c02165
66. Abe A, Yamada H, Moriya S, Miyazawa K. The β-carboline alkaloid harmol induces cell death via autophagy but not apoptosis in human non-small cell lung cancer A549 cells. Biol Pharm Bull. 2013;34(8):1264-72. doi:10.1248/bpb.34.1264
67. Abe A, Yamada H. Harmol induces apoptosis by caspase-8 activation independently of Fas/Fas ligand interaction in human lung carcinoma H596 cells. Anticancer Drugs. 2009;20(5):373-81. doi:10.1097/cad.0b013e32832a2dd9
68. Cao MR, Li Q, Liu ZL, Liu HH, Wang W, Liao XL, et al. Harmine induces apoptosis in HepG2 cells via mitochondrial signaling pathway. Hepatobiliary Pancreat Dis Int. 2011;10(6);599-604. doi:10.1016/s1499-3872(11)60102-1
69. Sarkar S, Bhattacharjee P, Bhadra K. DNA binding and apoptotic induction ability of harmalol in HepG2: Biophysical and biochemical approaches. Chem Biol Interact. 2016;258:142-52. doi:10.1016/j.cbi.2016.08.024
70. Zaker F, Oody A, Arjmand A. A study on the antitumoral and differentiation effects of Peganum harmala derivatives in combination with ATRA on leukaemic cells. Arch Pharm Res. 2007;30(7):844-9. doi:10.1007/bf02978835
71. Lamchouri F, Zemzami M, Jossang A, Abdellatif A, Israili ZH, Lyoussi B. Cytotoxicity of alkaloids isolated from Peganum harmala seeds. Pak J Pharm Sci. 2013;26(4):699-706.
72. Hai-Rong C, Xiang H, Xiao-Rong Z. Harmine suppresses bladder tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Biosci Rep. 2019;39(5):BSR20190155. doi:10.1042/bsr20190155
73. Hamsa TP, Kuttan G. Harmine activates intrinsic and extrinsic pathways of apoptosis in B16F-10 melanoma. Chin Med. 2011;6(1):11. doi:10.1186/1749-8546-6-11

Authors

Tohfa Nasibova
dr.tohfe@gmail.com (Primary Contact)
1.
Nasibova T. Cancer Statistics and Anticancer Potential of Peganum harmala Alkaloids: A Review. Borneo J Pharm [Internet]. 2022Feb.28 [cited 2024Mar.28];5(1):71-80. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/3052

Article Details