Taro (Colosia esculenta) Leaves Extract Inhibits Streptococcus mutans ATCC 31987

Ayu Nala El Muna Haerussana (1) , Angreni Ayuhastuti (2) , Siti Fira Yuniar (3) , Hana Alifah Bustami (4) , Widyastiwi Widyastiwi (5)
(1) Poltekkes Kemenkes Bandung , Indonesia
(2) Poltekkes Kemenkes Bandung , Indonesia
(3) Poltekkes Kemenkes Bandung , Indonesia
(4) Poltekkes Kemenkes Bandung , Indonesia
(5) Poltekkes Kemenkes Bandung , Indonesia

Abstract

Dental caries was the most common disease in both adults and children. Streptococcus mutans is the main bacteria causing plaque formation and was the initiator of dental caries. Antibacterials derived from plants can be used to prevent plaque formation. Taro (Colosia esculenta) has been used in traditional medicine. Antibacterial compounds have been discovered in C. esculenta leaves. This study aimed to determine the ability of C. esculenta leaf ethanol extract to inhibit the growth of S. mutans ATCC 31987. Simplicia preparation, extract preparation, and phytochemical screening was carried out. Then, the antibacterial activity test was performed using the disc diffusion method to determine the zone of inhibition at various concentrations of 10, 20, 30, 40, 50, 60, and 70%. Colosia esculenta leaf ethanol extract contains alkaloids, flavonoids, triterpenoids, saponins, and produces an inhibition zone at each concentration variation. Very strong antibacterial activity was produced at a concentration of 70% at 21.11±0.46 mm, which was higher than the positive control.

Full text article

Generated from XML file

References

1. Dye BA. The Global Burden of Oral Disease: Research and Public Health Significance. J Dent Res. 2017;96(4):361-3. doi:10.1177/0022034517693567
2. Chen X, Daliri EBM, Kim N, Kim JR, Yoo D, Oh DH. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens. 2020;9(7):569. doi:10.3390/pathogens9070569
3. Neel EAA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine. 2016;11:4743-63. doi:10.2147/ijn.s107624
4. Siqueira Jr JF, Rôças IN. Microbiology and treatment of acute apical abscesses. Clin Microbiol Rev. 2013;26(2):255-73. doi:10.1128/cmr.00082-12
5. Colak H, Dülgergil CT, Dalli M, Hamidi MM. Early childhood caries update: A review of causes, diagnoses, and treatments. J Nat Sci Biol Med. 2013;4(1):29-38. doi:10.4103/0976-9668.107257
6. Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407-17. doi:10.1128/jcm.01410-07
7. Naka S, Wato K, Misaki T, Ito S, Matsuoka D, Nagasawa Y, et al. Streptococcus mutans induces IgA nephropathy-like glomerulonephritis in rats with severe dental caries. Sci Rep. 2021;11(1):5784. doi:10.1038/s41598-021-85196-4
8. Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, et al. The Biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1):10.1128/microbiolspec.GPP3-0051-2018. doi:10.1128/microbiolspec.gpp3-0051-2018
9. Vyas T, Bhatt G, Gaur A, Sharma C, Sharma A, Nagi R. Chemical plaque control - A brief review. J Family Med Prim Care. 2021;10(4):1562-8. doi:10.4103/jfmpc.jfmpc_2216_20
10. James P, Worthington HV, Parnell C, Harding M, Lamont T, Cheung A, et al. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst Rev. 2017;3(3):CD008676. doi:10.1002/14651858.cd008676.pub2
11. Brookes ZLS, Bescos R, Belfield LA, Ali K, Roberts A. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020;103:103497. doi:10.1016/j.jdent.2020.103497
12. Pizzo G, Guiglia R, Imburgia M, Pizzo I, D’Angelo M, Giuliana G. The Effects of Antimicrobial Sprays and Mouthrinses on Supragingival Plaque Regrowth: A Comparative Study. J Periodontol. 2006;77(2):248–56. doi:10.1902/jop.2006.050116
13. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177. doi:10.3389/fphar.2013.00177
14. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013;10(5):210-29. doi:10.4314/ajtcam.v10i5.2
15. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites. 2019;9(11):258. doi:10.3390/metabo9110258
16. Ladeska V, Am RA, Hanani E. Colocasia esculanta L. (Talas): Kajian Farmakognosi, Fitokimia dan Aktivitas Farmakologi. J Sains Kesehatan. 2021;3(2):351-8. doi:10.25026/jsk.v3i2.441
17. Eleazu CO. Characterization of The Natural Products in Cocoyam (Colocasia esculenta) using GC–MS. Pharm Biol. 2016;54(12):2880–5. doi:10.1080/13880209.2016.1190383
18. Al-Kaf AG, Al-Deen AMT, ALhaidari SAA, Al-Hadi FA. Phytochemical Analysis and Antimicrobial Activity of Colocasia esculenta (Taro) Medicinal Plant Leaves Used in Folk Medicine for Treatment of Wounds and Burns in Hufash District Al Mahweet Governorate–Yemen. Univers J Pharm Res. 2019;4(2):29-33. doi:10.22270/ujpr.v4i2.254
19. Agyare C, Boakye YD. Antimicrobial and Anti-Inflammatory Properties of Anchomanes difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochem Pharmacol. 2015;5:1. doi:10.4172/2167-0501.1000201
20. Elmosallamy A, Eltawil N, Ibrahim S, Hussein SAA. Phenolic Profile: Antimicrobial Activity and Antioxidant Capacity of Colocasia esculenta (L.) Schott. Egypt J Chem. 2021;64(4):2165–72. doi:10.21608/ejchem.2021.56495.3213
21. Pawar HA, Choudhary PD, Kamat SR. An Overview of Traditionally Used Herb, Colocasia esculenta, as a Phytomedicine. Med Aromat Plants. 2018;7:4. doi:10.4172/2167-0412.1000317
22. Alam S, Rashid MA, Sarker MMR, Emon NU, Arman M, Mohamed IN, et al. Antidiarrheal, Antimicrobial and Antioxidant Potentials of Methanol Extract of Colocasia gigantea Hook. f. Leaves: Evidenced from In Vivo and In Vitro Studies Along with Computer-aided Approaches. BMC Complement Med Ther. 2021;21:119. doi:10.1186/s12906-021-03290-6
23. Li HM, Hwang SH, Kang BG, Hong JS, Lim SS. Inhibitory Effects of Colocasia esculenta (L.) Schott Constituents on Aldose Reductase. Molecules. 2014;19(9):13212–24. doi:10.3390/molecules190913212
24. Lam KY, Ling APK, Koh RY, Wong YP, Say YH. A Review on Medicinal Properties of Orientin. Adv Pharmacol Sci. 2016;2016:4104595. doi:10.1155/2016/4104595
25. Wang S, Yao J, Zhou B, Yang J, Chaudry MT, Wang M, et al. Bacteriostatic Effect of Quercetin as An Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro. J Food Prot. 2018;81(1):67–78. doi:10.4315/0362-028x.jfp-17-214
26. Singh B, Namrat, Kumar L, Dwivedi SC. Antibacterial and Antifungal Activity of Colocasia esculenta Aqueous Extract: An Edible Plant. J Pharm Res. 2011;4(5):1459–60.
27. Dutta S, Aich B. A Study of Antibacterial and Antifungal Activity of The Leaves of Colocasia esculenta Linn. Int J Pharm Sci Res. 2017;8(3):1184–7.
28. Zhang QW, Lin LG, Ye WC. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Med. 2018;13:20. doi:10.1186/s13020-018-0177-x
29. Tiwari P, Kumar B, Kaur M, Gurpreet K, Kaur H. Phytochemical screening and Extraction: A Review. Int Pharm Sci. 2011;1:98-106.
30. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines. 2018;5(3):93. doi:10.3390/medicines5030093
31. Guimarães AC, Meireles LM, Lemos MF, Guimarães MCC, Endringer DC, Fronza M, et al. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules. 2019;24(13):2471. doi:10.3390/molecules24132471
32. Patra AK. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. Dietary Phytochem Microbes. 2012;1-32. doi:10.1007/978-94-007-3926-0_1
33. Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front Microbiol. 2019;10:911. doi:10.3389/fmicb.2019.00911
34. Arnida A, Maulidia M, Khairunnisa A, Sutomo S, Faisal F. Standardization of Simplicia and Ethanol Extract of Purun Danau (Lepironia articulata (Retz.) Domin) Rhizome. Borneo J Pharm. 2021;4(4):273–82. doi:10.33084/bjop.v4i4.2794
35. Praptiwi P, Wulansari D, Fahoni A, Harnoto N, Novita R, Alfridsyah, et al. Phytochemical Screening, Antibacterial and Antioxidant Assessment of Leuconotis eugenifolia Leaf Extract. Nusantara Biosci. 2020;12(1):79–85. doi:10.13057/nusbiosci/n120114
36. Ngibad K. Phytochemical Screening of Sunflower Leaf (Helianthus annuus) and Anting-Anting (Acalypha indica Linn) Plant Ethanol Extract. Borneo J Pharm. 2019;2(1):24–30. doi:10.33084/bjop.v2i1.689
37. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J Pharm Anal. 2016;6(2):71–9. doi:10.1016/j.jpha.2015.11.005
38. Díez-Aguilar M, Martínez-García L, Cantón R, Morosini MI. Is a New Standard Needed for Diffusion Methods for In Vitro Susceptibility Testing of Fosfomycin against Pseudomonas aeruginosa? Antimicrob Agents Chemother. 2015;60(2):1158-61. doi:10.1128/aac.02237-15
39. Saifudin A, Raharjo S, Eso A, Uji Aktivitas Antibakteri Ekstrak Metanol Rumput Laut (Kappaphycus alvarezii) pada Berbagai Tingkat Konsentrasi terhadap Pertumbuhan Bakteri Streptococcus mutans. Medula. 2015;3(1):185–91. doi:10.46496/medula.v3i1.2541
40. MaiaMRG, Marques S, Cabrita ARJ, Wallace RJ, Thompson G, Fonseca AJM, et al. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria. Front Microbiol. 2016;7:1381. doi:10.3389/fmicb.2016.01381
41. Haerussana ANEM, Dwiastuti WP, Sukowati CA. Antibacterial Activity of Salam (Syzygium polyanthum) Leaves 70% Ethanolic Extract on Staphylococcus aureus and Staphylococcus epidermidis. J Trop Pharm Chem. 2021;5(4):375-80. doi:10.25026/jtpc.v5i4.352
42. Dewijanti ID, Mangunwardoyo W, Dwianti A, Hanafi M, Artanti N, Mozef T, et al. Antimicrobial Activity of Bay Leaf (Syzygium polyanthum (Wight) Walp) extracted using various solvent. AIP Conf Proceed. 2019;2175(1):020021. doi:10.1063/1.5134585
43. Eddy NO. Inhibitive and Adsorption Properties of Ethanol Extract of Colocasia esculenta Leaves for The Corrosion of Mild Steel in H2SO4. Int J Phys Sci. 2009;4(4):165–71. doi:10.5897/IJPS.9000319
44. Parbuntari H, Prestica Y, Gunawan R, Nurman MN, Adella F. Preliminary Phytochemical Screening (Qualitative Analysis) of Cacao Leaves (Theobroma cacao L.). Eksakta. 2018;19(2):40–5. doi:10.24036/eksakta/vol19-iss2/142
45. Zarmouh NO, Eyunni SK, Soliman KFA. The Benzopyrone Biochanin-A as a reversible, competitive, and selective monoamine oxidase B inhibitor. BMC Complement Altern Med. 2017;17(1):34. doi:10.1186/s12906-016-1525-y
46. Cheok CY, Salma HAK, Sulaiman R. Extraction and quantification of saponins: A review. Food Res Int. 2014;59:16-40. doi:10.1016/j.foodres.2014.01.057
47. Kareru PG, Keriko JM, Gachanja AN, Kenji GM. Direct detection of triterpenoid saponins in medicinal plants. Afr J Tradit Complement Altern Med. 2007;5(1):56-60. doi:10.4314/ajtcam.v5i1.31257
48. Ponce AG, Fritz R, Del Valle C, Roura SI. Antimicrobial Activity of Essential Oils on The Native Microflora of Organic Swiss Chard. LWT Food Sci Technol. 2003;36(7):679–84. doi:10.1016/S0023-6438(03)00088-4
49. Rajendiran M, Trivedi HM, Chen D, Gajendrareddy P, Chen L. Recent Development of Active Ingredients in Mouthwashes and Toothpastes for Periodontal Diseases. Molecules. 2021;26(7):2001. doi:10.3390/molecules26072001
50. Cheung HY, Wong MMK, Cheung SH, Liang LY, Lam YW, Chiu SK. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS One. 2012;7(5):e36659. doi:10.1371/journal.pone.0036659
51. Mi H, Wang D, Xue Y, Zhang Z, Niu J, Hong Y, et al. Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing. Antimicrob Agents Chemother. 2016;60(8):5054-8. doi:10.1128/aac.03003-15
52. Trisia A, Philyria R, Toemon AN. Uji Aktivitas Antibakteri Ekstrak Etanol Daun Kalanduyung (Guazuma ulmifolia Lamk.) terhadap Pertumbuhan Staphylococcus aureus dengan Metode Difusi Cakram (Kirby-Bauer). Anterior J. 2018;17(2):136–43. doi:10.33084/anterior.v17i2.12
53. Kubde MS, Khadabadi SS, Saboo SS, Ghorpade DS, Modi AJ. In Vitro Antimicrobial Activity of The Crude Extracts of Colocasia esculenta Leaves (Araceae). Int J Pharm Sci Res. 2010;1(8):88-91.
54. Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control. 2019;8:118. doi:10.1186/s13756-019-0559-6
55. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343-56. doi:10.1016/j.ijantimicag.2005.09.002
56. Sudji IR, Subburaj Y, Frenkel N, García-Sáez AJ, Wink M. Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol. Molecules. 2015;20(11):20146-60. doi:10.3390/molecules201119682

Authors

Ayu Nala El Muna Haerussana
ayunalaelmh@gmail.com (Primary Contact)
Angreni Ayuhastuti
Siti Fira Yuniar
Hana Alifah Bustami
Widyastiwi Widyastiwi
1.
Haerussana ANEM, Ayuhastuti A, Yuniar SF, Bustami HA, Widyastiwi W. Taro (Colosia esculenta) Leaves Extract Inhibits Streptococcus mutans ATCC 31987. Borneo J Pharm [Internet]. 2022Aug.31 [cited 2025Jan.15];5(3):268-7. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/3156

Article Details