Aloe vera Gel Ameliorates Fat-Rich and High Fructose (FRHF) Diet-Induced Pancreatic and Splenic Damage in Mice
Abstract
High-fat diet alone or in combination with high fructose has been known to induce diabetes, obesity, hypertension, and immune dysfunction. The study evaluates the role of Aloe vera in fat-rich and high fructose diet-induced (FRHFD) hyperglycemias in addition to testicular and splenic morphology in mice. Twenty BALB/c Mice were randomly distributed into four groups (n=5). The groups were fed on a normal diet, FRHFD, FRHFD + 10 g A. vera, and FRHFD + 20 g A. vera for 10 weeks. All the mice were sacrificed a day after the 10 weeks of treatment. The result showed that mice fed on FRHFD plus A. vera had a significantly lower (p<0.05) blood glucose level relative to the FRHFD-fed mice. The mice fed on FRHFD plus A. vera had a significantly lower (p<0.05) blood glucose level relative to the FRHFD-fed mice. Aloe vera was found to ameliorate FRHFD-induced pancreatic islet and acini damage. It also prevented distorted lymphoid cells and testicular damage induced by FRHFD. Aloe vera prevents hyperglycemia and protects pancreatic islets in FRHFD-fed mice. It further prevents immune dysfunction and protects against testicular damage. Hence, A. vera supplementation could be an alternative and/or complementary therapy for hyperglycemia-related disorders.
Full text article
References
2. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34(1):11-20. doi:10.1016/j.cmet.2021.12.012
3. She Y, Mangat R, Tsai S, Proctor SD, Richard C. The Interplay of Obesity, Dyslipidemia and Immune Dysfunction: A Brief Overview on Pathophysiology, Animal Models, and Nutritional Modulation. Fornt Nutr. 2022;9:840209. doi:10.3389/fnut.2022.840209
4. Fruh SM. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29(S1):S3-14. doi:10.1002/2327-6924.12510
5. Jin X, Qiu T, Li L, Yu R, Chen X, Li C, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403-24. doi:10.1016/j.apsb.2023.01.012
6. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23(7):804-14. doi:10.1038/nm.4350
7. Martyn JAJ, Kaneki M, Yasuhara S. Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms. Anesthesiology. 2008;109(1):137-48. doi:10.1097/aln.0b013e3181799d45
8. Silviera EA, Rosa LPdS, Santos ASEAdC, Cardoso CKdS, Noll M. Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index. Int J Environ Res Public Health. 2020;17(11):3930. doi:10.3390/ijerph17113930
9. Zhao J, Zhai L, Liu Z, Wu S, Xu L. Leptin Level and Oxidative Stress Contribute to Obesity-Induced Low Testosterone in Murine Testicular Tissue. Oxid Med Cell Longev. 2014;2014:190945. doi:10.1155/2014/190945
10. Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as a disruptor of female fertility. Reprod Biol Endocrinol. 2018;16(1):22. doi:10.1186/s12958-018-0336-z
11. Eriksson J, Haring R, Grarup N, Vandenput L, Wallaschofski H, Lorentzen E, et al. Causal relationship between obesity and serum testosterone status in men: A bi-directional mendelian randomization analysis. PLoS One. 2017;12(4):e0176277. doi:10.1371/journal.pone.0176277
12. Andersen CJ, Murphy KE, Fernandez ML. Impact of Obesity and Metabolic Syndrome on Immunity. Adv Nutr. 2016;7(1):66-75. doi:10.3945/an.115.010207
13. Milner JJ, Beck MA. Micronutrients, immunology and inflammation: The impact of obesity on the immune response to infection. Proc Nutr Soc. 2012;71(2):298-306. doi:10.1017/s0029665112000158
14. McLaughin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017;127(1):5-13. doi:10.1172/jci88876
15. Jung S, Bae H, Song WS, Jang C. Dietary Fructose and Fructose-Induced Pathologies. Annu Rev Nutr. 2022;22:45-66. doi:10.1146/annurev-nutr-062220-025831
16. DeMarco V, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10(6):364-76. doi:10.1038/nrendo.2014.44
17. Olugbenga OM, Olukole SG, Adeoye AT, Adejoke AD. Semen characteristics and sperm morphological studies of the West African Dwarf Buck treated with Aloe vera gel extract. Iran J Reprod Med. 2011;9(2):83-8.
18. Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules. 2020;25(6):1324. doi:10.3390/molecules25061324
19. Hu Y, Xu J, Hu Q. Evaluation of the antioxidant potential of Aloe vera (Aloe Barbadian-sis miller) extracts, J Agric Food Chem. 2003;51(26):7788-91. doi:10.1021/jf034255i
20. Javaid S, Waheed A. Hypoglycemic and hypotriglyceridemic effects of Aloe vera whole leaf and sitagliptin in diabetic rats. Int J Pathol, 2020;18(2):48-52.
21. Abubakar MA, Dibal NI, Attah MOO, Chiroma SMC. Exploring the antioxidant effects of Aloe vera: Potential role in controlling liver function and lipid profile in high fat and fructose diet (HFFD) fed mice. Pharmacol Res Mod Chin Med. 2022;4:100150. doi:10.1016/j.prmcm.2022.100150
22. Farag MM, Ashour EH, El-Hadidy WF. Amelioration of High Fructose Diet-Induced Insulin Resistance, Hyperuricemia, and Liver Oxidative Stress by Combined Use of Selective Agonists of PPAR-α and PPAR-γ in Rats. Dubai Med J. 2020;3(2):76-86. doi:10.1159/000506899
23. Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, et al. Fructose and Hepatic Insulin Resistance. Crit Rev Clin Lab Sci. 2020;57(5):308–22. doi:10.1080/10408363.2019.1711360
24. Yamato M, Shiba T, Yoshida M, Ide T, Seri N, Kudou W. Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. FEBS J. 2007;274(15):3855-63. doi:10.1111/j.1742-4658.2007.05914.x
25. Kiran S, Rakib A, Kodidela S, Kumar S, Singh UP. High-Fat Diet-Induced Dysregulation of Immune Cells Correlates with Macrophage Phenotypes and Chronic Inflammation in Adipose Tissue. Cells. 2022;11(8):1327. doi:10.3390/cells11081327
26. Cheng H, Zhou J, Sun Y, Zhan Q, Zhang D. High fructose diet: A risk factor for immune system dysregulation. Hum Immunol. 2022;83(6):538-46. doi:10.1016/j.humimm.2022.03.007
27. DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9(24):212. doi:10.1186/bcr1746
28. Jin R, Willment A, Patel SS, Sun X, Song M, Mannery YO, et al. Fructose-induced endotoxemia in pediatric nonalcoholic Fatty liver disease, Int J Hepatol. 2014;2014:560620. doi:10.1155/2014/560620
29. Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The gut microbiota and inflammation: an overview, Int J Environ Res Public Health. 2020;17(20):7618. doi:10.3390/ijerph17207618
30. Campos-Silva P, Furriel A, Costa WS, Sampaio FJB, Gregório BM. Metabolic and testicular effects of the long-term administration of different high-fat diets in adult rats. Int Braz J Urol. 2015;41(3):569-75. doi:10.1590/s1677-5538.ibju.2014.0244
31. Gujjala S, Putakala M, Gangarapu V, Nukala S, Bellamkonda R, Ramaswamy R, et al. Protective effect of Caralluma fimbriata against high-fat diet-induced testicular oxidative stress in rats. Biomed Pharmacother. 2016;83:167-76. doi:10.1016/j.biopha.2016.06.031
32. Latino D, Baccari GC, Di Fiore MM, Cioffi F, Venditti M, Giacco A, et al. Autophagy and mitochondrial damage in the testis of high-fat diet-fed rats. Gen Comp Endocrinol. 2022;328:114104. doi:10.1016/j.ygcen.2022.114104
33. Erdemir F, Atilgan D, Markoc F, Boztepe O, Suha-Parlaktas B, Sahin S. The effect of diet-induced obesity on testicular tissue and serum oxidative stress parameters. Actas Urol Esp. 2012;36(3):153-9. doi:10.1016/j.acuro.2011.06.019
Authors
Copyright (c) 2023 Nathan Isaac Dibal, Zainab Muhammad Goni, Martha Orendu Oche Attah, Umar Imam, Muhammad Abdullahi, Muzammil Bashir, Usman Adam, Fatima Aisami, Mohammed Shuwa, Sunday Manye, Madu Nom Gadzama, Musa Samaila Chiroma, Helga Bedan Ishaya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors continue to retain the copyright to the article if the article is published in the Borneo Journal of Pharmacy. They will also retain the publishing rights to the article without any restrictions.
Authors who publish in this journal agree to the following terms:
- Any article on the copyright is retained by the author(s).
- The author grants the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share work with an acknowledgment of the work authors and initial publications in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of published articles (e.g., post-institutional repository) or publish them in a book, with acknowledgment of their initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to and during the submission process. This can lead to productive exchanges and earlier and greater citations of published work.
- The article and any associated published material are distributed under the Creative Commons Attribution-ShareAlike 4.0 International License.