Chemoinformatic-aided Antidiabetic Analysis of the Therapeutic Potential of Phytoconstituents in Eremomastax speciosa Extracts

Sulyman Olalekan Ibrahim (1) , Halimat Yusuf Lukman (2) , Israel Ehizuelen Ebhohimen (3) , Halimah Funmilayo Babamale (4) , Fatimah Ronke Abdulkadir (5) , Abdulmumeen Amao Hamid (6) , Marili Funmilayo Zubair (7) , Olubunmi Atolani (8)
(1) University of Ilorin , Nigeria
(2) Summit University , Nigeria
(3) Ambrose Alli University , Nigeria
(4) University of Ilorin , Nigeria
(5) University of Ilorin , Nigeria
(6) University of Ilorin , Nigeria
(7) University of Ilorin , Nigeria
(8) University of Ilorin , Nigeria

Abstract

This research attempts to establish the antihyperglycemic potential of Eremomastax speciosa, a medicinal plant utilized in traditional West African diabetes therapy, through virtual simulation. While numerous reports have validated its biological potency, studies on the drug-likeness and antidiabetic properties of its compounds are limited.  The in silico pharmacological, and toxicological profile of aqueous, methanolic/methylene phytochemicals from previously reported work was analyzed using Swiss ADME and Protox II online server. The docking process was performed using PyRx-0.8, coupled with AutoDock Vina. Phytochemicals that aligned with Lipinski’s rules for drugs were then subjected to a virtual docking simulation. This simulation replicated the inhibitory effects of E. speciosa phytochemicals on sodium-glucose co-transporters (SGLT2) and α-amylase, similar to metformin, an FDA-approved antidiabetic medicine utilized as a control. Phytochemicals such as 8, 9,10-dimethyltricyclo[4.2.1.1(2,5)]decane-9,10-diol (-6.6 kcal/mol), 11-isopropylidenetricyclo[4.3.1.1(2,5)]undec-3-en-10-one (-7.9 kcal/mol), 4-(1,5-dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one (-7.3 kcal/mol), and N-methyl-N-4-[2-acetoxymethyl-1-pyrrolidyl]-2-butynyl]-acetamide (-7.5 kcal/mol) exhibits superior binding affinities to the specific proteins targeted, compared to metformin, implying that E. speciosa is a source of druggable antidiabetic molecules that can be enhanced to achieve better efficacy.

Full text article

Generated from XML file

References

1. Andrade C, Gomes NG, Duangsrisai S, Andrade PB, Pereira DM, Valentao P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: ethnobotanical surveys, scientific evidence and phytochemicals. J Ethnopharmacol. 2020;263:113177. DOI: 10.1016/j.jep.2020.113177; PMID: 32768637
2. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142. DOI: 10.1016/j.diabres.2020.108142; PMCID: PMC7144611; PMID: 32278764
3. Rachdaoui N. Insulin: the friend and the foe in the development of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(5):1770. DOI: 10.3390/ijms21051770; PMCID: PMC7084909; PMID: 32150819
4. Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598-612. DOI: 10.4239/wjd.v6.i4.598; PMCID: PMC4434080; PMID: 25987957
5. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. DOI: 10.3390/ijms21176275; PMCID: PMC7503727; PMID: 32872570
6. Sacks KN, Friger M, Shoham-Vardi I, Abokaf H, Spiegel E, Sergienko R, et al. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am J Obstet Gynecol. 2016;215(3):380.e1-7. DOI: 10.1016/j.ajog.2016.03.030; PMID: 27018463
7. Astutik S, Pretzsch J, Kimengsi JN. Asian medicinal plants’ production and utilization potentials: A review. Sustainability. 2019;11(19):5483. DOI: 10.3390/su11195483
8. Pundarikakshudu K, Shah PA, Patel MG. Chapter 1 - A comprehensive review of Indian medicinal plants effective in diabetes management: Current status and future prospects. In: Naeem M, Aftab T, editors. Antidiabetic Medicinal Plants: Applications and Opportunities. Cambridge; Academic Press: 2024. p. 3-73. DOI: 10.1016/B978-0-323-95719-9.00013-6
9. Nchegang B, Mezui C, Longo F, Nkwengoua Z, Amang A, Tan P. Effects of the aqueous extract of Eremomastax speciosa (Acanthaceae) on sexual behavior in normal male rats. Biomed Res Int. 2016;2016:9706429. DOI: 10.1155/2016/9706429; PMCID: PMC4971301; PMID: 27525283
10. Effiong GS, Ebe NU, Akpanyung EO, Emeka RA, Nwuzor EO. Effects of Ethanol Leaf Extract of Eremomastax speciosa (African Blood Tonic) on Female Reproductive Hormones of Albino Wistar Rats. Int J Biochem Bioinform Biotechnol Stud. 2020;5(1):1-12.
11. Onoja SO, Eke C, Ejiofor E, Madubuike KG, Ezeja MI, Omeh YN, et al. antioxidant, anti-inflammatory and anti-nociceptive properties of hydro-methanol extract of Eremomastax speciosa (Hochst.) Cufod leaf. Afr J Tradit Complement Altern Med. 2017;14(6):56-63. DOI: 10.21010/ajtcam.v14i6.6
12. Barlow D, Buriani A, Ehrman T, Bosisio E, Eberini I, Hylands P. In-silico studies in Chinese herbal medicines’ research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. J Ethnopharmacol. 2012;140(3):526-34. DOI: 10.1016/j.jep.2012.01.041; PMCID: PMC7126886; PMID: 22326356
13. Ibrahim SO, Lukman HY, Zubair MF, Amusan OT, Abdulkadri FR, Lawal B, et al. An Insight into the Physicochemical, Drug-likeness, Pharmacokinetics and Toxicity Profile of Kigelia africana (Lam) Bioactive Compounds. Al-Bahir J Eng Pure Sci. 2024;4(1):4. DOI: 10.55810/2313-0083.1050
14. Rehman A, Bukhari SA, Akhter N, Hussain MAI, Chaudhary Z. In Silico identification of novel phytochemicals that target SFRP4: An early biomarker of diabesity. PLoS One. 2023;18(11):e0292155. DOI: 10.1371/journal.pone.0292155; PMCID: PMC10635506; PMID: 37943820
15. Jamtsho T, Yeshi K, Perry MJ, Loukas A, Wangchuk P. Approaches, Strategies and Procedures for Identifying Anti-Inflammatory Drug Lead Molecules from Natural Products. Pharmaceuticals. 2024;17(3):283. DOI: 10.3390/ph17030283; PMCID: PMC10974486; PMID: 38543070
16. Siwe GT, Ernestine NZ, Amang A, Mezui C, Choudhary I, Tan P. Comparative GC-MS analysis of two crude extracts from Eremomastax speciosa (Acanthaceae) leaves. J Med Plant Stud. 2019;7(2):25-9.
17. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. DOI: 10.1038/srep42717; PMCID: PMC5335600; PMID: 28256516
18. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-63. DOI: 10.1093/nar/gky318; PMCID: PMC6031011; PMID: 29718510
19. Kalra S, Jacob J, Baruah MP. Metformin + Sodium-glucose Co-transporter-2 Inhibitor: Salutogenic Lifestyle Mimetics in a Tablet? Indian J Endocrinol Metab. 2018;22(1):164-6. DOI: 10.4103/ijem.ijem_266_17; PMCID: PMC5838898; PMID: 29535955
20. Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J Food Drug Anal. 2016;24(3):627-34. DOI: 10.1016/j.jfda.2016.03.003; PMCID: PMC9336674; PMID: 28911570
21. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. DOI: 10.1002/jcc.21334; PMCID: PMC3041641; PMID: 19499576
22. Antoni C, Vera L, Devel L, Catalani MP, Czarny B, Cassar-Lajeunesse E, et al. Crystallization of bi-functional ligand protein complexes. J Strcut Biol. 2013;182(3):246-54. DOI: 10.1016/j.jsb.2013.03.015; PMID: 23567804
23. Aribisala JO, Sabiu S. Cheminformatics identification of phenolics as modulators of penicillin-binding protein 2a of Staphylococcus aureus: A structure–activity-relationship-based study. Pharmaceutics. 2022;14(9):1818. DOI: 10.3390/pharmaceutics14091818; PMCID: PMC9503099; PMID: 36145565
24. Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Junior JAO, Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine. 2017;12:4991-5011. DOI: 10.2147/ijn.s133832; PMCID: PMC5516877; PMID: 28761340
25. Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet. 2019;58(10):1281-94. DOI: 10.1007/s40262-019-00750-8; PMCID: PMC6773482; PMID: 30972694
26. Kadri A, Aouadi K. In vitro antimicrobial and α-glucosidase inhibitory potential of enantiopure cycloalkylglycine derivatives: Insights into their in silico pharmacokinetic, druglikeness, and medicinal chemistry properties. J Appl Pharm Sci. 2020;10(6):107-15. DOI: 10.7324/JAPS.2020.10614
27. Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-41. DOI: 10.1016/j.ddtec.2004.11.007; PMID: 24981612
28. Riaz M, Zia-Ul-Haq M, Saad B. Anthocyanins and human health: biomolecular and therapeutic aspects. Cham: Springer; 2016. DOI: 10.1007/978-3-319-26456-1
29. Ahmed AH, Alkali YI. In silico pharmacokinetics and molecular docking studies of lead compounds derived from Diospyros mespiliformis. PharmaTutor. 2019;7(3):31-7. DOI: 10.29161/PT.v7.i3.2019.31
30. Welcome MO. Blood brain barrier inflammation and potential therapeutic role of phytochemicals. PharmaNutrition. 2020;11:100177. DOI: 10.1016/j.phanu.2020.100177
31. Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959-72. DOI: 10.1038/jcbfm.2012.126; PMCID: PMC3494002; PMID: 22929442
32. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. DOI: 10.3390/ijms20184331; PMCID: PMC6769923; PMID: 31487867
33. Jiao X, Jin X, Ma Y, Yang Y, Li J, Liang L, et al. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem. 2021;90:107402. DOI: 10.1016/j.compbiolchem.2020.107402; PMID: 33338839
34. Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr. 2020;8(12):6320-37. DOI: 10.1002/fsn3.1987; PMCID: PMC7723208; PMID: 33312519
35. Swain SS, Hussain T. Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug‐Able Anti‐TB Phytochemicals: A Cost‐Effective Platform for Natural Product‐Based Drug Discovery. Chem Biodivers. 2022;19(11):e202200267. DOI: 10.1002/cbdv.202200267
36. Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Nucleus. 2022;65(3):399-411. DOI: 10.1007/s13237-022-00405-3; PMCID: PMC9579558; PMID: 36276225
37. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms. 2021;9(10):2041. DOI: 10.3390/microorganisms9102041; PMCID: PMC8541629; PMID: 34683362

Authors

Sulyman Olalekan Ibrahim
ibrahim.sio@unilorin.edu.ng (Primary Contact)
Halimat Yusuf Lukman
Israel Ehizuelen Ebhohimen
Halimah Funmilayo Babamale
Fatimah Ronke Abdulkadir
Abdulmumeen Amao Hamid
Marili Funmilayo Zubair
Olubunmi Atolani
Author Biographies

Sulyman Olalekan Ibrahim, University of Ilorin

Department of Industrial Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

Halimat Yusuf Lukman, Summit University

Department of Chemical Sciences, Summit University, Offa, Kwara State, Nigeria

Israel Ehizuelen Ebhohimen, Ambrose Alli University

Department of Biochemistry, Ambrose Alli University, Ekpoma, Edo State, Nigeria

Halimah Funmilayo Babamale, University of Ilorin

Department of Industrial Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

Fatimah Ronke Abdulkadir, University of Ilorin

Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

Abdulmumeen Amao Hamid, University of Ilorin

Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

Marili Funmilayo Zubair, University of Ilorin

Department of Industrial Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

Olubunmi Atolani, University of Ilorin

Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

1.
Ibrahim SO, Lukman HY, Ebhohimen IE, Babamale HF, Abdulkadir FR, Hamid AA, Zubair MF, Atolani O. Chemoinformatic-aided Antidiabetic Analysis of the Therapeutic Potential of Phytoconstituents in Eremomastax speciosa Extracts. Borneo J Pharm [Internet]. 2024May30 [cited 2024Dec.22];7(2):172-86. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/6820

Article Details