Antidiabetic and TNF-α Lowering Effect of Tagetes erecta Extract in Alloxan-Induced Diabetic Rats
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by impaired insulin production or action, often leading to pancreatic β-cell dysfunction and apoptosis. Pro-inflammatory cytokines, notably Tumor Necrosis Factor-alpha (TNF-α), play a critical role in the pathogenesis of type 2 diabetes (T2D). While Tagetes erecta (marigold) has demonstrated potential in lowering blood glucose in hyperglycemic conditions, its anti-inflammatory effects in diabetic models remain underexplored. This study aimed to evaluate the antidiabetic and TNF-α lowering effects of T. erecta extract in alloxan-induced diabetic rats. Twenty-five male Wistar rats were divided into a normal control group (n=5) and a diabetic group (n=20) induced by alloxan (blood glucose ≥126 mg/dL). Diabetic rats were then randomized into four treatment subgroups (n=5 each): untreated diabetic control, and diabetic groups treated with T. erecta extract at doses of 25 mg/kg BW, 50 mg/kg BW, or 75 mg/kg BW (administered intraperitoneally). Statistical analysis revealed that T. erecta extract significantly reduced blood glucose levels in alloxan-induced diabetic rats (p <0.05). Furthermore, the highest dose of T. erecta extract (75 mg/kg BW) effectively attenuated elevated TNF-α levels, demonstrating a significant anti-inflammatory effect. In conclusion, this study provides compelling evidence that T. erecta extract exhibits both antidiabetic and anti-inflammatory properties by significantly lowering blood glucose and TNF-α levels in alloxan-induced diabetic rats, particularly at the 75 mg/kg BW dose.
Full text article
References
2. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications review-Article. Cell Death Dis. 2018;9(2):119. DOI: 10.1038/s41419-017-0135-z; PMCID: PMC5833737; PMID: 29371661
3. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020;10(1):107-11. DOI: 10.2991/jegh.k.191028.001; PMCID: PMC7310804; PMID: 32175717
4. Podell BK, Ackart DF, Richardson MA, DiLisio JE, Pulford B, Basaraba RJ. A model of type 2 diabetes in the Guinea pig using sequential dietinduced glucose intolerance and streptozotocin treatment. Dis Model Mech. 2017;10(2):151–62. DOI: 10.1242/dmm.025593; PMCID: PMC5312002; PMID: 28093504
5. Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed Pharmacother. 2017;95(24):605–13. DOI: 10.1016/j.biopha.2017.08.098; PMID: 28881291
6. Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig. 2023;14(9):1015-37. DOI: 10.1111/jdi.14034; PMCID: PMC10445217; PMID: 37401013
7. Ibrahim RM, Abdelhafez HM, El-Shamy SAEM, Eid FA, Mashaal A. Arabic gum ameliorates systemic modulation in Alloxan monohydrate-induced diabetic rats. Sci Rep. 2023;13(1):5005. DOI: 10.1038/s41598-023-31897-x; PMCID: PMC10042862; PMID: 36973339
8. Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina. 2017;53(6):365-74. DOI: 10.1016/j.medici.2018.02.001; PMID: 29548636
9. Alzamil H. Elevated Serum TNF- α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. J Obes. 2020;2020:5076858. DOI: 10.1155/2020/5076858; PMCID: PMC7013317; PMID: 32089876
10. Sato S, Imachi H, Lyu J, Miyai Y, Fukunaga K, Dong T, et al. Effect of TNF-α on the expression of ABCA1 in pancreatic Β-cells. J Mol Endocrinol. 2018;61(4):185–93. DOI: 10.1530/jme-18-0167
11. Qiao YC, Chen YL, Pan YH, Tian F, Xu Y, Zhang X, et al. The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. PLoS One. 2017;12(4):e0176157. DOI: 10.1371/journal.pone.0176157; PMCID: PMC5398633; PMID: 28426801
12. Majeed HMS, Abbas AAH, Khudair MS. The role of TNFα in type2 diabetes mellitus. Rev Bionatura. 2022;7(2):32. DOI: 10.21931/RB/2022.07.02.32
13. Hendrijantini N, Sitalaksmi RM, Ari MDA, Hidayat TJ, Putri PAN, Sukandar D. The expression of TNF-α, IL-1β, and IL-10 in the diabetes mellitus condition induced by the combination of spirulina and chitosan. Bali Med J. 2020;9(1):22–6. DOI: 10.15562/bmj.v9i1.1625
14. Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem. 2018;119(1):105–10. DOI: 10.1002/jcb.26174; PMID: 28569437
15. Swastini DA, Shaswati GAPA, Widnyana IPS, Amin A, Kusuma LAS, Putra AARY, et al. Penurunan Kadar Glukosa Darah dan Gambaran Histopatologi Pankreas dengan Pemberian Gula Aren (Arenga pinnata) pada Tikus Jantan Galur Wistar yang Diinduksi Aloksan. Indones Med Veterinus. 2018;7(2):10-21. DOI: 10.19087/imv.2018.7.2.94
16. Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals. 2021;14(8):806. DOI: 10.3390/ph14080806; PMCID: PMC8398612; PMID: 34451903
17. Shetty LJ, Sakr FM, Al-Obaidy K, Patel MJ, Shareef H. A brief review on medicinal plant Tagetes erecta Linn. J Appl Pharm Sci. 2015;5(3):91–5. DOI: 10.7324/JAPS.2015.510.S16
18. Dipa P, Mall SK, Goswami S, Singh R. Promising Antidiabetic Potential of Tagetes Species: Update Review. World J Pharm Res. 2021;10(14):771–83. DOI: 10.20959/wjpr202114-22446
19. Jadhav HB, Badwaik LS, Annapure U, Casanova F, Alaskar K. A Review on the Journey of edible flowers from farm to consumer's plate. Appl Food Res. 2023;3(2):100312. DOI: 10.1016/j.afres.2023.100312
20. Santi NM. Review: Aktivitas Antioksidan Ekstrak bunga Gemitir (Tagetes erecta Linn.). J Farmagazine. 2021;8(1):25-31. DOI: 10.47653/farm.v8i1.534
21. Kusumiyati K, Putri IE, Hadiwijaya Y, Kartika A, Maulana YE, Sutari W. Quality Assurance of Total Carotenoids and Quercetin in Marigold Flowers (Tagetes erecta L.) as Edible Flowers. Int J Food Sci. 2025;2025:3277288. DOI: 10.1155/ijfo/3277288; PMCID: PMC11753848; PMID: 39845693
22. Feng G, Huang S, Liu Y, Xiao F, Liu J, Zhang Z, et al. The transcriptome analyses of Tagetes erecta provides novel insights into secondary metabolite biosynthesis during fl ower development. Gene. 2018;660:18–27. DOI: 10.1016/j.gene.2018.03.051; PMID: 29574190
23. Kusmiati, Caesarianto W, Afiati F, Hutabarat R. Effect lutein of marigold flower (Tagetes erecta L.) on decreasing glucose and malondialdehyde levels in Alloxan-induced blood mice. AIP Conf Proc. 2019;2120:070009. DOI: 10.1063/1.5115726
24. Kurniati F. Potensi Bunga Marigold (Tagetes erecta L.) Sebagai Salah Satu Komponen Pendukung Pengembangan Pertanian. Media Pertanian. 2021;6(1):22-9. DOI: 10.37058/mp.v6i1.3010
25. Aristyanti NPP, Wartini NM, Gunam IBW. Rendemen dan Karakteristik Ekstrak Pewarna Bunga Kenikir (Tagetes erecta L.) pada Perlakuan Jenis Pelarut dan Lama Ekstraksi. J Rekayasa Manaj Agroindustri. 2017;5(3):13–23.
26. Moliner C, Barros L, Dias MI, López V, Langa E, Ferreira ICFR, et al. Edible flowers of tagetes erecta l. As functional ingredients: Phenolic composition, antioxidant and protective effects on caenorhabditis elegans. Nutrients. 2018;10(12):2002. DOI: 10.3390/nu10122002; PMCID: PMC6316237; PMID: 30567311
27. Petrova I, Petkova N, Ivanov I. Five edible flowers – Valuable source of antioxidants in human nutrition. Int J Pharmacogn Phytochem Res. 2016;8(4):604–10.
28. Kresnapati INBA, Khaerunnisa S, Safitri I. Ethanol Extract of Marigold Flower (Tagetes Erecta L.) Decreases the Total Cholesterol, Low Density Lypoprotein (LDL), Malondialdehyde (MDA), and Apoliprotein B (APOB) on Hyperlipidemia Rat Models. Folia Medica Indones. 2021;57(3):245-9. DOI: 10.20473/fmi.v57i3.23838
29. Park SY, Park K, Oh JW, Park G. Gold nanoparticle encoded with marigold (Tagetes erecta L.) suppressed hyperglycemia -induced senescence in retinal pigment epithelium via suppression of lipid peroxidation. Arab J Chem. 2023;16(10):105120. DOI: 10.1016/j.arabjc.2023.105120
30. Pinoargote-Chang M, Correa-Londoño GA, Segovia-Cedeño D, Arias-Echeverri JP. Preliminary phytochemical screening and antioxidant activity of Annona deceptrix (Westra) H. Rainer an endemic and endangered species of Ecuador. Braz J Biol. 2025;85:e287825. DOI: 10.1590/1519-6984.287825; PMID: 39968997
31. Kristanti WY, Budiyanto MAK, Permana FH. Effect of Various Doses of Kenikir Flower Crown Extract (Targetes erecta L.) on Reducing Blood Glucose Levels in Rats. Indones J Biotechnol Biodivers. 2021;5(3):95–105. DOI: 10.47007/ijobb.v5i3.117
32. Dai KS, Tai DY, Ho P, Chen CC, Peng WC, Chen ST, et al. Accuracy of the EasyTouch blood glucose self-monitoring system: a study of 516 cases. Clin Chim Acta. 2004;349(1–2):135–41. DOI: 10.1016/j.cccn.2004.06.010; PMID: 15469866
33. Teodhora T, Yuliana D, Ficanata AT. Ekspresi Glukosa Transporter-2 di Sel Beta Pankreas dan Sel Hepatosit Tikus yang Diinduksi Diabetes Mellitus. Pharm J Indones. 2021;6(2):131–5. DOI: 10.21776/ub.pji.2021.006.02.9
34. Deepika N, Duraiswamy B, Khanam S, Maohar D, Shivaprasad HN, Amrutanand T. Bioactive compounds from marigold processing waste: Extraction, isolation, and antidiabetic activity. J Appl Pharm Sci. 2023;13(Suppl 1):21–7. DOI: 10.7324/JAPS.2023.126892
35. Kumar S, Singh R, Vasudeva N, Sharma S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol. 2012;11:9. DOI: 10.1186/1475-2840-11-9; PMCID: PMC3286385; PMID: 22257465
36. Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol. 2020;145:111738. DOI: 10.1016/j.fct.2020.111738; PMCID: PMC7480666; PMID: 32916220
37. Roosdiana A, Permata FS, Fitriani RI, Umam K, Safitri A. Ruellia tuberosa L. Extract Improves Histopathology and Lowers Malondialdehyde Levels and TNF Alpha Expression in the Kidney of Streptozotocin-Induced Diabetic Rats. Vet Med Int. 2020;2020:8812758. DOI: 10.1155/2020/8812758; PMCID: PMC7582068; PMID: 33110487
38. Parklak W, Ounjaijean S, Kulprachakarn K, Boonyapranai K. In Vitro α-Amylase and α-Glucosidase Inhibitory Effects, Antioxidant Activities, and Lutein Content of Nine Different Cultivars of Marigold Flowers (Tagetes spp.). Molecules. 2023;28(8):3314. DOI: 10.3390/molecules28083314; PMCID: PMC10142025; PMID: 37110550
39. Adhikari B. The Role of Alkaloids in the Management of Diabetes Mellitus. J Chem. 2021;2021(1):2691525. DOI: 10.1155/2021/2691525
40. El-Barky A, Hussein SA, Alm-Eldeen AE, Hafez YA, Mohamed TM. Saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017;7(1):148–58.
41. Kumari M, Jain S. Tannins: An Antinutrient with Positive Effect to Manage Diabetes. Res J Recent Sci. 2012;1(12):70–3.
42. Singh S, Bansal A, Singh V, Chopra T, Poddar J. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus. J Diabetes Metab Disord. 2022;21(1):941–50. DOI: 10.1007/s40200-021-00943-8; PMCID: PMC9167359; PMID: 35673446
43. Shehadeh MB, Suaifan GARY, Abu-Odeh AM. Plants Secondary Metabolites as Blood Glucose- Lowering Molecules. Molecules. 2021;26(14):4333. DOI: 10.3390/molecules26144333; PMCID: PMC8307461; PMID: 34299610
44. Tang H, Zeng Q, Ren N, Wei Y, He Q, Chen M, et al. Kaempferide improves oxidative stress and inflammation by inhibiting the TLR4/IκBα/NF-κB pathway in obese mice. Iran J Basic Med Sci. 2021;24(4):493–8. DOI: 10.22038/ijbms.2021.52690.11892; PMCID: PMC8143716; PMID: 34094031
45. Kim SS, Lee EH, Seo SR. Inhibitory Effects of Tagetes erecta L. in Neuroinflammation. Korean J Med Crop Sci. 2023;31(4):259–67. DOI: 10.7783/KJMCS.2023.31.4.259
46. Sanjaya SS, Park MH, Ryu HW, Choi YH, Lee MH, Kang CH, et al. Polyphenol-enriched extract from Tagetes erecta L. attenuates LPS-induced inflammation and toxicity by targeting the TLR4/MD2 signaling pathway. J Funct Foods. 2024;117:106228. DOI: 10.1016/j.jff.2024.106228
Authors
Copyright (c) 2025 Kadeq Novita Prajawanti, Yohanes Ardian Kapri Negara, Intan Febiola Arianing, Fitri Junitasari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors continue to retain the copyright to the article if the article is published in the Borneo Journal of Pharmacy. They will also retain the publishing rights to the article without any restrictions.
Authors who publish in this journal agree to the following terms:
- Any article on the copyright is retained by the author(s).
- The author grants the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share work with an acknowledgment of the work authors and initial publications in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of published articles (e.g., post-institutional repository) or publish them in a book, with acknowledgment of their initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to and during the submission process. This can lead to productive exchanges and earlier and greater citations of published work.
- The article and any associated published material are distributed under the Creative Commons Attribution-ShareAlike 4.0 International License.