Integrative Network Pharmacology Unveils Limonia acidissima as a Potential Natural Product for Targeting Cancer

Reni Sri Wahyuni (1) , M. Artabah Muchlisin (2) , Ahmad Shobrun Jamil (3) , Engrid Juni Astuti (4) , Agustin Rafikayanti (5)
(1) Universitas Muhammadiyah Malang , Indonesia
(2) Universitas Muhammadiyah Malang , Indonesia
(3) Universitas Muhammadiyah Malang , Indonesia
(4) Universitas Muhammadiyah Malang , Indonesia
(5) Universitas Muhammadiyah Malang , Indonesia

Abstract

Cancer remains a formidable health challenge worldwide, with complex molecular mechanisms driving its initiation, progression, and therapeutic resistance. In this study, we employed bioinformatics analyses to elucidate the molecular underpinnings of cancer biology, focusing on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Our GO analysis revealed the enrichment of key biological processes such as protein phosphorylation, regulation of programmed cell death, and transmembrane receptor signaling pathways, underscoring the critical roles of signaling cascades and regulatory mechanisms in tumorigenesis. Similarly, molecular functions such as protein kinase activity and ATP binding were identified as significantly enriched, highlighting the importance of protein kinases and molecular interactions in cancer development and progression. The KEGG pathway analysis further delineated dysregulated signaling pathways associated with cancer, including the MAPK and PI3K-Akt signaling pathways, implicating these pathways as central regulators of cancer progression. These findings deepen our understanding of cancer biology and offer potential targets for therapeutic intervention. Integrating multi-omics data and systems biology approaches may provide deeper insights into the intricate networks underlying cancer pathogenesis, paving the way for developing more effective treatments for cancer patients.

Full text article

Generated from XML file

References

1. Pesec M, Sherertz T. Global health from a cancer care perspective. Future Oncol. 2015;11(15):2235–45. DOI: 10.2217/fon.15.142; PMID: 26235185
2. Masui K, Gini B, Wykosky J, Zanca C, Mischel PS, Furnari FB, et al. A tale of two approaches: Complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis. 2013;34(4):725–38. DOI: 10.1093/carcin/bgt086; PMCID: PMC3616676; PMID: 23455378
3. Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. 2021;10(5):1056. DOI: 10.3390/cells10051056; PMCID: PMC8146072; PMID: 33946927
4. Debela DT, Muzazu SGY, Heraro KD, Ndalama MT, Mesele BW, Haile DC, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. DOI: 10.1177/20503121211034366; PMCID: PMC8366192; PMID: 34408877
5. Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, et al. New perspectives on how to discover drugs from herbal medicines: CAM’S outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013:627357. DOI: 10.1155/2013/627375; PMCID: PMC3619623; PMID: 23634172
6. Dhakar A, Chorotiya P, Meena M, Singh C, Purvia RP, Adlakha MK. Pharmacological properties and phytochemical of Limonia acidissima: a review. World J Pharm Res. 2019;8(10):637–45. DOI: 10.20959/wjpr201910-15730
7. Syakri S, Syahrana NA, Ismail A, Tahir KA, Masri A. A review: Testing antioxidant activity on kawista plants (limonia acidissima l.) in indonesia. Open Access Maced J Med Sci. 2021;9(F):281–7. DOI: 10.3889/oamjms.2021.6497
8. Dodkins J, Hopman WM, Wells JC, Lievens Y, Malik RA, Pramesh CS, et al. Is Clinical Research Serving the Needs of the Global Cancer Burden? An Analysis of Contemporary Global Radiation Therapy Randomized Controlled Trials. Int J Radiat Oncol Biol Phys. 2022;113(3):500–8. DOI: 10.1016/j.ijrobp.2022.01.053; PMID: 35151802
9. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21. DOI: 10.1038/s41423-020-0488-6; PMCID: PMC7395159; PMID: 32612154
10. Oulas A, Minadakis G, Zachariou M, Sokratous K, Bourdakou MM, Spyrou GM. Systems Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief Bioinform. 2019;20(3):806–24. DOI: 10.1093/bib/bbx151; PMCID: PMC6585387; PMID: 29186305
11. Li W, Yuan G, Pan Y, Wang C, Chen H. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review. Front Pharmacol. 2017;8(74). DOI: 10.3389/fphar.2017.00074; PMCID: PMC5322182; PMID: 28280467
12. Conte F, Fiscon G, Licursi V, Bizzarri D, D’Antò T, Farina L, et al. A paradigm shift in medicine: A comprehensive review of network-based approaches. Biochim Biophys Acta Gene Regul Mech. 2019;1863(6):194416. DOI: 10.1016/j.bbagrm.2019.194416; PMID: 31382052
13. Recanatini M, Cabrelle C. Drug Research Meets Network Science: Where Are We? J Med Chem. 2020;63(16):8653–66. DOI: 10.1021/acs.jmedchem.9b01989; PMCID: PMC8007104; PMID: 32338900
14. Murthy HN, Dalawai D. Bioactive Compounds of Wood Apple (Limonia acidissima L.). In: Murthy HN, Bapat VA, editors. Bioactive Compounds in Underutilized Fruits and Nuts. Udaipur: Springer Nature; 2020. p. 543–69. DOI: 10.1007/978-3-030-30182-8_39
15. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. DOI: 10.1101/gr.1239303; PMCID: PMC403769; PMID: 14597658
16. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373–80. DOI: 10.1093/nar/gkac956; PMCID: PMC9825602; PMID: 36305812
17. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–64. DOI: 10.1093/nar/gkz382; PMCID: PMC6602486; PMID: 31106366
18. Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D, et al. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Pract Guid to Life Sci Databases. Singapore: Springer Nature; 2022. p. 27–56. DOI: 10.1007/978-981-16-5812-9_2
19. Oliveros JC. Venny. An interactive tool for comparing lists with Venn’s diagrams. 2015. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html
20. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46. DOI: 10.1093/nar/gkac1000; PMCID: PMC9825434; PMID: 36370105
21. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11. DOI: 10.1186/1752-0509-8-s4-s11; PMCID: PMC4290687; PMID: 25521941
22. Saputro DV, Jamil AS, Muchlisin MA, Almuhtarihan IF. A Network Pharmacology of Lemongrass (Cymbopogon citratus) on COVID-19 Cases. In: Dewi TJD, Ma’arif B, Rahmayanti M, Rahmadanita FF, Vania V, editors. Proceed Int Pharm Ulul Albab Conf Semin. Malang: Universitas Islam Negeri Maulana Malik Ibrahim; 2023. p. 50–8. DOI: 10.18860/planar.v3i0.2471
23. Fauzi MA, Muchlisin MA, Jamil AS, Almuhtarihan IF. A Network Pharmacology of Beluntas (Pluchea indica) on Immunity Cases. In: Dewi TJD, Ma’arif B, Rahmayanti M, Rahmadanita FF, Vania V, editors. Proceed Int Pharm Ulul Albab Conf Semin. Malang: Universitas Islam Negeri Maulana Malik Ibrahim; 2023. p. 77–92. DOI: 10.18860/planar.v3i0.2474
24. Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023;224(1):iyad031. DOI: 10.1093/genetics/iyad031; PMCID: PMC10158837; PMID: 36866529
25. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92. DOI: 10.1093/nar/gkac963; PMCID: PMC9825424; PMID: 36300620
26. Zhong S, Tian L, Li C, Storch KF, Wong WH. Comparative analysis of gene sets in the gene ontology space under the multiple hypothesis testing framework. Proc IEEE Comput Syst Bioinform Conf. 2004;425-35. DOI: 10.1109/csb.2004.1332455; PMID: 16448035
27. Gerritsen JS, White FM. Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells. Expert Rev Proteomics. 2021;18(8):661–74. DOI: 10.1080/14789450.2021.1976152; PMCID: PMC8628306; PMID: 34468274
28. Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signalingand its use as targeted therapy (Review). Int J Mol Med. 2017;40(2):271–80. DOI: 10.3892/ijmm.2017.3036; PMCID: PMC5500920; PMID: 28656226
29. Khan SA, Lee TKW. Investigations of nitazoxanide molecular targets and pathways for the treatment of hepatocellular carcinoma using network pharmacology and molecular docking. Front Pharmacol. 2022;13:968148. DOI: 10.3389/fphar.2022.968148; PMCID: PMC9358010; PMID: 35959427
30. Bhanumathy KK, Balagopal A, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Giambra V. Review protein tyrosine kinases: Their roles and their targeting in leukemia. Cancers. 2021;13(2):184. DOI: 10.3390/cancers13020184; PMCID: PMC7825731; PMID: 33430292
31. Azad T, Rezaei R, Surendran A, Singaravelu R, Boulton S, Dave J, et al. Hippo signaling pathway as a central mediator of receptors tyrosine kinases (RTKS) in tumorigenesis. Cancers. 2020;12(8):2042. DOI: 10.3390/cancers12082042; PMCID: PMC7463967; PMID: 32722184
32. Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines. 2022;10(8):1987. DOI: 10.3390/biomedicines10081987; PMCID: PMC9405757; PMID: 36009534
33. Lyu H, Hou D, Liu H, Ruan S, Tan C, Wu J, et al. HER3 targeting augments the efficacy of panobinostat in claudin-low triple-negative breast cancer cells. NPJ Precis Oncol. 2023;7(1)72. DOI: 10.1038/s41698-023-00422-8; PMCID: PMC10400567; PMID: 37537339
34. Booth LA, Roberts JL, Dent P. The role of cell signaling in the crosstalk between autophagy and apoptosis in the regulation of tumor cell survival in response to sorafenib and neratinib. Semin Cancer Biol. 2020;66:129–39. DOI: 10.1016/j.semcancer.2019.10.013; PMCID: PMC7167338; PMID: 31644944
35. Dandoti S. Mechanisms adopted by cancer cells to escape apoptosis – A review. Biocell. 2021;45(4):863–84. DOI: 10.32604/biocell.2021.013993
36. Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells. 2024;13(1):96. DOI: 10.3390/cells13010096; PMCID: PMC10777970; PMID: 38201302
37. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22(1):138. DOI: 10.1186/s12943-023-01827-6; PMCID: PMC10436543; PMID: 37596643
38. Gong F, Yang N, Wang X, Zhao Q, Chen Q, Liu Z, et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today. 2020;32:100851. DOI: 10.1016/j.nantod.2020.100851
39. Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol. 2021;22(5):346–66. DOI: 10.1038/s41580-020-00322-w; PMCID: PMC7838852; PMID: 33504982
40. Pang K, Wang W, Qin JX, Shi ZD, Hao L, Ma YY, et al. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm. 2022;3(4):e175. DOI: 10.1002/mco2.175; PMCID: PMC9632491; PMID: 36349142
41. Zhao Y, Bilal M, Raza A, Khan MI, Mehmood S, Hayat U, et al. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol. 2021;168:22–37. DOI: 10.1016/j.ijbiomac.2020.12.009; PMID: 33290765
42. Ramachandran S, Makukhin N, Haubrich K, Nagala M, Forrester B, Lynch DM, et al. Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2. Nat Commun. 2023;14(1):6345. DOI: 10.1038/s41467-023-41894-3; PMCID: PMC10564737; PMID: 37816714
43. Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci. 2023;24(21):15693. DOI: 10.3390/ijms242115693; PMCID: PMC10649022; PMID: 37958678
44. Chen X, Ru Y, Takahashi H, Nakazono M, Shabala S, Smith SM, et al. Single-cell transcriptomic analysis of pea shoot development and cell-type-specific responses to boron deficiency. Plant J. 2024;117(1):302–22. DOI: 10.1111/tpj.16487; PMID: 37794835
45. Chen H, Zhang YHPJ. Enzymatic regeneration and conservation of ATP: challenges and opportunities. Crit Rev Biotechnol. 2020;41(1):16–33. DOI: 10.1080/07388551.2020.1826403; PMID: 33012193
46. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. DOI: 10.1038/s41392-021-00572-w; PMCID: PMC8165101; PMID: 34054126
47. Jose J, Ghantasala S, Choudhury SR. Arabidopsis transmembrane receptor-like kinases (RLKS): A bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci. 2020;21(11):4000. DOI: 10.3390/ijms21114000; PMCID: PMC7313013; PMID: 32503273
48. Dev SS, Abidin SAZ, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol. 2021;12:772510. DOI: 10.3389/fphar.2021.772510; PMCID: PMC8634471; PMID: 34867402
49. Ghosh S, Marrocco I, Yarden Y. Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv Cancer Res. 2020;147:1-57. DOI: 10.1016/bs.acr.2020.04.002; PMID: 32593398
50. Yip HYK, Papa A. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells. 2021;10(3):659. DOI: 10.3390/cells10030659; PMCID: PMC8002322; PMID: 33809714
51. Savva L, Georgiades SN. Recent developments in small-molecule ligands of medicinal relevance for harnessing the anticancer potential of g-quadruplexes. Molecules. 2021;26(4):841. DOI: 10.3390/molecules26040841; PMCID: PMC7914483; PMID: 33562720
52. Costales MG, Childs-Disney JL, Haniff HS, Disney MD. How We Think about Targeting RNA with Small Molecules. J Med Chem. 2020;63(17):8880–900. DOI: 10.1021/acs.jmedchem.9b01927; PMCID: PMC7486258; PMID: 32212706
53. Takakusagi Y, Takakusagi K, Sakaguchi K, Sugawara F. Phage display technology for target determination of small-molecule therapeutics: an update. Expert Opin Drug Discov. 2020;15(10):1199–211. DOI: 10.1080/17460441.2020.1790523; PMID: 32660284
54. Karcini A, Lazar IM. The SKBR3 cell-membrane proteome reveals telltales of aberrant cancer cell proliferation and targets for precision medicine applications. Sci Rep. 2022;12(1):10847. DOI: 10.1038/s41598-022-14418-0; PMCID: PMC9237123; PMID: 35760832
55. Ahmad HA, Seemab K, Wahab F, Khan MI. Signaling Pathways in Drug Development. In: Rauf A, editor. Drug Development and Safety. London: IntechOpen; 2024. DOI: 10.5772/intechopen.114041
56. Francavilla C, Obrien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol. 2022;12(2):210373. DOI: 10.1098/rsob.210373; PMCID: PMC8864352; PMID: 35193394
57. Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol. 2020;10:1533. DOI: 10.3389/fonc.2020.01533; PMCID: PMC7479251; PMID: 32984007
58. Uray IP, Uray K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int J Mol Sci. 2021;22(21):11566. DOI: 10.3390/ijms222111566; PMCID: PMC8584042; PMID: 34768998
59. Codini M, Garcia-Gil M, Albi E. Cholesterol and sphingolipid enriched lipid rafts as therapeutic targets in cancer. Int J Mol Sci. 2021;22(2):726. DOI: 10.3390/ijms22020726; PMCID: PMC7828315; PMID: 33450869
60. Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res. 2021;81:101080. DOI: 10.1016/j.plipres.2020.101080; PMID: 33359620
61. O’Sullivan MJ, Lindsay AJ. The endosomal recycling pathway—at the crossroads of the cell. Int J Mol Sci. 2020;21(17):6074. DOI: 10.3390/ijms21176074; PMCID: PMC7503921; PMID: 32842549
62. Spano D, Colanzi A. Golgi Complex: A Signaling Hub in Cancer. Cells. 2022;11(13):1990. DOI: 10.3390/cells11131990; PMCID: PMC9265605; PMID: 35805075
63. Jeger JL. Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep. 2020;47(12):9801–10. DOI: 10.1007/s11033-020-05993-4; PMID: 33185829
64. Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol. 2021;22(9):625–43. DOI: 10.1038/s41580-021-00375-5; PMID: 34075221
65. Aniento F, Hernández VS de M, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants Get access. Plant Cell. 2022;34(1):146–73. DOI: 10.1093/plcell/koab235; PMCID: PMC8773984; PMID: 34550393
66. Hanley SE, Cooper KF. Sorting nexins in protein homeostasis. Cells. 2021;10(1):17. DOI: 10.3390/cells10010017; PMCID: PMC7823608; PMID: 33374212
67. Liguori GL, Kralj-Iglič V. Pathological and Therapeutic Significance of Tumor-Derived Extracellular Vesicles in Cancer Cell Migration and Metastasis. Cancers. 2023;15(18):4425. DOI: 10.3390/cancers15184425; PMCID: PMC10648223; PMID: 37760395
68. Martínez-Limón A, Joaquin M, Caballero M, Posas F, de Nadal E. The p38 pathway: From biology to cancer therapy. Int J Mol Sci. 2020;21(6):1913. DOI: 10.3390/ijms21061913; PMCID: PMC7139330; PMID: 32168915
69. Yousefi H, Vatanmakanian M, Mahdiannasser M, Mashouri L, Alahari N V., Monjezi MR, et al. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene. 2021;40(6):1043–63. DOI: 10.1038/s41388-020-01588-2; PMID: 33420366
70. Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR, et al. Growth factors, pi3k/akt/mtor and mapk signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 2021;221(19):260. DOI: 10.3390/ijms221910260; PMCID: PMC8508474; PMID: 34638601
71. Morana O, Wood W, Gregory CD. The Apoptosis Paradox in Cancer. Int J Mol Sci. 2022;23(3):1328. DOI: 10.3390/ijms23031328; PMCID: PMC8836235; PMID: 35163253
72. Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol. 2020;72(12):1732–49. DOI: 10.1111/jphp.13351; PMID: 32783235
73. Wajapeyee N, Gupta R. Epigenetic alterations and mechanisms that drive resistance to targeted cancer therapies. Cancer Res. 2021;81(22):5589–95. DOI: 10.1158/0008-5472.can-21-1606; PMCID: PMC8595782; PMID: 34531319
74. Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol. 2020;11:73. DOI: 10.3389/fimmu.2020.00073; PMCID: PMC7000552; PMID: 32063906
75. De Pasquale V, Pavone LM. Heparan sulfate proteoglycan signaling in tumor microenvironment. Int J Mol Sci. 2020;21(18):6588. DOI: 10.3390/ijms21186588; PMCID: PMC7554799; PMID: 32916872
76. Sharma A, Sinha S, Shrivastava N. Therapeutic Targeting Hypoxia-Inducible Factor (HIF-1) in Cancer: Cutting Gordian Knot of Cancer Cell Metabolism. Front Genet. 2022;13:849040. DOI: 10.3389/fgene.2022.849040; PMCID: PMC9008776; PMID: 35432450
77. Chung C. From oxygen sensing to angiogenesis: Targeting the hypoxia signaling pathway in metastatic kidney cancer. Am J Heal Pharm. 2020;77(24):2064–73. DOI: 10.1093/ajhp/zxaa308; PMID: 33016992
78. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363. DOI: 10.3389/fonc.2022.985363; PMCID: PMC9597512; PMID: 36313628
79. Zhang X, Xu H, Bi X, Hou G, Liu A, Zhao Y, et al. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis. 2021;12(10):931. DOI: 10.1038/s41419-021-04221-6; PMCID: PMC8511016; PMID: 34642304
80. Freelander A, Brown LJ, Parker A, Segara D, Portman N, Lau B, et al. Molecular biomarkers for contemporary therapies in hormone receptor‐positive breast cancer. Genes. 2021;12(2):285. DOI: 10.3390/genes12020285; PMCID: PMC7922594; PMID: 33671468
81. Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol. 2022;15(1):77. DOI: 10.1186/s13045-022-01292-6; PMCID: PMC9166526; PMID: 35659268
82. Huang M, Yang L, Peng X, Wei S, Fan Q, Yang S, et al. Autonomous glucose metabolic reprogramming of tumour cells under hypoxia: Opportunities for targeted therapy. J Exp Clin Cancer Res. 2020;39(1):185. DOI: 10.1186/s13046-020-01698-5; PMCID: PMC7491117; PMID: 32928258
83. Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol. 2021;9:775507. DOI: 10.3389/fcell.2021.775507; PMCID: PMC8638743; PMID: 34869377
84. Song Y, Song W, Li Z, Song W, Wen Y, Li J, et al. CDC27 Promotes Tumor Progression and Affects PD-L1 Expression in T-Cell Lymphoblastic Lymphoma. Front Oncol. 2020;10:488. DOI: 10.3389/fonc.2020.00488; PMCID: PMC7190811; PMID: 32391258

Authors

Reni Sri Wahyuni
M. Artabah Muchlisin
artabahmuchlisin@umm.ac.id (Primary Contact)
Ahmad Shobrun Jamil
Engrid Juni Astuti
Agustin Rafikayanti
Author Biographies

Reni Sri Wahyuni, Universitas Muhammadiyah Malang

Department of Pharmacy, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia

M. Artabah Muchlisin, Universitas Muhammadiyah Malang

Department of Pharmacy, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia

Ahmad Shobrun Jamil, Universitas Muhammadiyah Malang

Department of Pharmacy, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia

Engrid Juni Astuti, Universitas Muhammadiyah Malang

Department of Pharmacy, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia

Agustin Rafikayanti, Universitas Muhammadiyah Malang

Department of Pharmacy, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia

1.
Wahyuni RS, Muchlisin MA, Jamil AS, Astuti EJ, Rafikayanti A. Integrative Network Pharmacology Unveils Limonia acidissima as a Potential Natural Product for Targeting Cancer. Borneo J Pharm [Internet]. 2024Aug.22 [cited 2024Aug.26];7(3). Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/6988

Article Details