Antisense Oligonucleotides: Concepts and Pharmaceutical Applications

Ariana Araya (1) , David Arias (2) , Karla Coto (3) , María Rebeca López (4) , Joselyn Rivera (5) , Juan José Mora (6)
(1) Universidad de Costa Rica , Costa Rica
(2) Universidad de Costa Rica , Costa Rica
(3) Universidad de Costa Rica , Costa Rica
(4) Universidad de Costa Rica , Costa Rica
(5) Universidad de Costa Rica , Costa Rica
(6) Universidad de Costa Rica , Costa Rica

Abstract

Antisense oligonucleotides are drugs whose mechanism is based on binding to RNA target sequences. For this purpose, they modify the protein expression through steric hindrance and exon omission. Its production involves several steps: synthesis, purification, and lyophilization. Usually, the most complicated procedure is synthesis due to the chemical reactions necessary to add the required oligonucleotide bases. BP1001, inotersen, nusinersen, eteplirsen, and golodirsen are a few antisense drugs developed for treating neurodegenerative and neuromuscular diseases. Although antisense oligonucleotides present off-target reactions, multiple studies are being performed. The following review shows information regarding the pharmaceutical characteristics for industrial production and the current state of applicability in clinical practice. In conclusion, some molecules have already been approved for commercialization (inotersen, nusinersen, ataluren, eteplirsen, and golodirsen), showing them as promising therapeutic solutions in the short and medium term for disorders developed by specific genetic factors.

Full text article

Generated from XML file

References

1. Bennett CF. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev Med. 2019;70:307-21. doi:10.1146/annurev-med-041217-010829
2. Oberemok VV, Laikova KV, Repetskaya AI, Kenyo IM, Gorlov MV, Kasich IG, et al. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey. Molecules. 2018;23(6):1302. doi:10.3390/molecules23061302
3. Svoboda J. Cell Association in Rous Sarcoma Virus (RSV) Rescue and Cell Infection. Folia Biol. 2015;61(5):161-7.
4. Potaczek DP, Garn H, Unger SD, Renz H. Antisense molecules: A new class of drugs. J Allergy Clin Immunol. 2016;137(5):1334-46. doi:10.1016/j.jaci.2015.12.1344
5. Gandhi H, Pathan A. Drug Discovery and Development: An Overview from the Regulatory Prospective. Pharmaceut Reg Affairs. 2019;8(1):1000215.
6. Ramelli SC, Comer BS, McLendon JM, Sandy LL, Ferretti AP, Barrington R, et al. Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma. Mol Ther Nucleic Acids. 2020;19:1000-14. doi:10.1016/j.omtn.2019.12.033
7. Studzińska S. Review on investigations of antisense oligonucleotides with the use of mass spectrometry. Talanta. 2018;176:329-43. doi:10.1016/j.talanta.2017.08.025
8. Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells. 2020;9(1):137. doi:10.3390/cells9010137
9. Minchin S, Lodge J. Understanding biochemistry: structure and function of nucleic acids. Essays Biochem. 2019;63(4):433-56. doi:10.1042/EBC20180038
10. Xu JZ, Zhang JI, Zhang WG. Antisense RNA: the new favorite in genetic research. J Zhejiang Univ Sci B. 2018;19(10):739-49. doi:10.1631/jzus.B1700594
11. Singh KP, Miaskowski C, Dhruva AA, Flowers E, Kober KM. Mechanisms and Measurement of Changes in Gene Expression. Biol Res Nurs. 2018;20(4):369-82. doi:10.1177/1099800418772161
12. Grabow WW, Andrews GE. On the nature and origin of biological information: The curious case of RNA. BioSystems. 2019;185:104031. doi:10.1016/j.biosystems.2019.104031
13. Carocci TJ, Neugebauer KM. Pre-mRNA Splicing in the Nuclear Landscape. Cold Spring Harb Symp Quant Biol. 2019;84:11-20. doi:10.1101/sqb.2019.84.040402
14. Corella D, Ordovas JM. Basic Concepts in Molecular Biology Related to Genetics and Epigenetics. Rev Esp Cardiol (Engl Ed). 2017;70(9):744-53. doi:10.1016/j.rec.2017.05.011
15. Lamolle G, Musto H. Why Prokaroytes Genomes Lack Genes with Introns Processed by Spliceosomes. J Mol Evol. 2018;86(9):611-2. doi:10.1007/s00239-018-9874-4
16. Li J, Tang M, Qi H. Codon-Reduced Protein Synthesis With Manipulating tRNA Components in Cell-Free System. Front Bioeng Biotechnol. 2022;10:891808. doi:10.3389/fbioe.2022.891808
17. Liang XH, Nichols JG, De Hoyos CL, Cooke ST. Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity. Nucleic Acids Res. 2020;48(17):9840-58. doi:10.1093/nar/gkaa715
18. Dhuri K, Bechtold C, Qujiano E, Pham H, Gupta A, Vikram A, et al. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med. 2020;9(6):2004. doi:10.3390/jcm9062004
19. Hagedorn PH, Pontoppidan M, Bisgaard TS, Berrera M, Dieckmann A, Ebeling M, et al. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice. Nucleic Acids Res. 2018;46(11):5366-80. doi:10.1093/nar/gky397
20. Yoshida T, Naito Y, Sasaki K, Uchida E, Sato Y, Naito M, et al. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences. Genes Cells. 2018;23(6):448-55. doi:10.1111/gtc.12587
21. Rázga F, Némethová V. Selective Therapeutic Intervention: A Challenge against Off-Target Effects. Trends Mol Med. 2017;23(8):671-4. doi:10.1016/j.molmed.2017.06.007
22. Østergaard ME, Nichols J, Dwight TA, Lima W, Jung ME, Swayze EE, et al. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Olignucleotides. Mol Ther Nucleic Acids. 2017;7:20-30. doi:10.1016/j.omtn.2017.02.001
23. Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T, Katz M, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res. 2016;44(5):2093-109. doi:10.1093/nar/gkv1210
24. Lai F, Damle SS, Ling KK, Rigo F. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination. Mol Cell. 2020;77(5):1032-43. doi:10.1016/j.molcel.2019.12.029
25. Yoshida T, Naito Y, Yasuhara H, Sasaki K, Kawaji H, Kawai J, et al. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells. Genes Cells. 2019;24(12):827-35. doi:10.1111/gtc.12730
26. Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides: A primer. Neurol Genet. 2019;5(2):e323.10.1212/NXG.0000000000000323
27. Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22(5):823-33. doi:10.1016/j.drudis.2017.01.013
28. Sato S, Takenaka S. Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA. Sensors. 2014;14(7):12437-50. doi:10.3390/s140712437
29. Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46-51. doi:10.1016/j.addr.2015.01.008
30. Evers MM, Toonen LJA, van Roon-Mom WMC. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev. 2015;87:90-103. doi:10.1016/j.addr.2015.03.008
31. Hegarty JP, Stewart Sr DB. Advances in therapeutic bacterial antisense biotechnology. Appl Microbiol Biotechnol. 2018;102(3):1055-65. doi:10.1007/s00253-017-8671-0
32. Bremer J, van der Heijden EH, Eichhorn DS, Meijer R, Lemmink HH, Scheffer H, et al. Natural Exon Skipping Sets the Stage for Exon Skipping as Therapy for Dystrophic Epidermolysis Bullosa. Mol Ther Nucleic Acids. 2019;18:465-75. doi:10.1016/j.omtn.2019.09.009
33. Ong AAL, Tan J, Bhadra M, Dezanet C, Patil KM, Chong MS, et al. RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing. Molecules. 2019;24(16):3020. doi:10.3390/molecules24163020
34. Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, et al. miRNases: Novel-peptide oligonucleotide bioconjugates that silence miR-21 in lymposarcoma cells. Biomaterials. 2017;122:163-178. doi:10.1016/j.biomaterials.2017.01.018
35. Danneberg F, Ghidini A, Dogandzhiyski P, Kalden E, Strömberg R, Göbel MW. Sequence-specific RNA cleavage by PNA conjugates of the metal-free artificial ribonuclease tris(2-aminobenzimidazole). Beilstein J Org Chem. 2015;11:493-8. doi:10.3762/bjoc.11.55
36. Staroseletz Y, Williams A, Burusco KK, Alibay I, Vlassov VV, Zenkova MA, et al. `Dual´ peptidyl-oligonucleotide conjugates: Role of conformational flexibility in catalytic cleavage of RNA. Biomaterials. 2017;112:44-61. doi:10.1016/j.biomaterials.2016.09.033
37. Wan WB, Seth PP. The Medicinal Chemistry of Therapeutic Olignucleotides. J Med Chem. 2016;59(21):9645-67. doi:10.1021/acs.jmedchem.6b00551
38. Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022;13:812774. doi:10.3389/fimmu.2022.812774
39. Lange MJ, Burke DH, Chaput JC. Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid. Nucleic Acid Ther. 2019;29(1):51-9. doi:10.1089/nat.2018.0751
40. Xue XY, Mao XG, Zhou Y, Chen Z, Hu Y, Hou Z, et al. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomed Nanotechnol Biol Med. 2018;14(3):745-58. doi:10.1016/j.nano.2017.12.026
41. Ita K. Dermal/transdermal delivery of small interfering RNA and antisense oligonucleotides- advances and hurdles. Biomed Pharmacother. 2017;87:311-20. doi:10.1016/j.biopha.2016.12.118
42. Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P, et al. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int J Pharm. 2020;581:119269. doi:10.1016/j.ijpharm.2020.119269
43. Fu J, Cai J, Ling G, Li A, Zhao J, Guo X, et al. Cationic polymers for enhancing CpG oligodeoxynucleotides-mediated cancer immunotherapy. Eur Polym J. 2019;113:115-32. doi:10.1016/j.eurpolymj.2018.12.044
44. Viney NJ, Tai LJ, Jung S, Yu RZ, Guthrie S, Baker BF, et al. Phase 1 Investigation of a Ligand-Conjugated Antisense Oligonucleotide with Increased Potency for the Treatment of Transthyretin Amyloidosis. J Card Fail. 2019;25(8):S80-1. doi:10.1016/j.cardfail.2019.07.228
45. Kim Y, Jo M, Schmidt J, Luo X, Prakash TP, Zhou T, et al. Enhanced Potency of GalNAc-Conjugated Antisense Oligonucleotides in Hepatocellular Cancer Models. Mol Ther. 2019;27(9):1547-57. doi:10.1016/j.ymthe.2019.06.009
46. Usach I, Martinez R, Festini T, Peris JE. Subcutaneous Injection of Drugs: Literature Review of Factors Influencing Pain Sensation at the Injection Site. Adv Ther. 2019;36(11):2986-96. doi:10.1007/s12325-019-01101-6
47. Andersson S, Antonsson M, Elebring M, Jansson-Löfmark R, Weidolf L. Drug metabolism and pharmacokinetic strategies for oligonucleotide- and mRNA- based drug development. Drug Discov Today. 2018;23(10):1733-45. doi:10.1016/j.drudis.2018.05.030
48. Kiesman WF, McPherson AK, Diorazio LJ, Van den Bergh L, Smith PD, Northall JM, et al. Perspectives on the Designation of Oligonucleotide Starting Materials. Nucleic Acid Ther. 2021;31(2):93-113. doi:10.1089/nat.2020.0909
49. Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol. 2020;2(1):94-150. doi:10.1039/d0cb00136h
50. Zhang J, Lu D, Li A, Yang J, Wang S. Design, synthesis and anti-influenza virus activities of terminal modified antisense oligonucleotides. Tetrahedron Lett. 2014;55(1):94-7. doi:10.1016/j.tetlet.2013.10.129
51. Bhardwaj R, Tue PT, Biyani M, Takamura Y. A Simple and Efficient Microfluidic System for Reverse Chemical Synthesis (5´-3´) of a Short-Chain Oligonucleotide Without Inert Atmosphere. Appl Sci. 2019;9(7):1357. doi:10.3390/app9071357
52. Surzhikov SA, Timofeev EN, Chernov BK, Golova JB, Mirzabekov AD. Advanced method for oligonucleotide deprotection. Nucleic Acids Res. 2000;28(8):E29. doi:10.1093/nar/28.8.e29
53. Koshel B, Birdsall R, Chen W. Two-dimensional liquid chromatography coupled to mass spectrometry for impurity analysis of dye-conjugated oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1137:121906. doi:10.1016/j.jchromb.2019.121906
54. Zlobina M, Sedo O, Chou MY, Slepankova L, Lukavsky PJ. Efficient large-scale preparation and purification of short single-stranded RNA oligonucleotides. BioTechniques. 2016;60(2):75-83. doi:10.2144/000114383
55. Filho PJS, Silveira LA, Betemps GR, Oliveira PK, Sampaio DM, de los Santos DG. Use of lyophilization as analytical strategy for chromatographic characterization of aqueous phase of bio-oil produced by rice husk pyrolysis. Microchem J. 2020;152:104457. doi:10.1016/j.microc.2019.104457
56. Shakhgil´dyan GY, Piyanzina KI, Stepko AA, Natyrov AN, Mikhailov AM, Savinkov VI, et al. Nanoporous Glass with Controlled Pore Size for High-Efficiency Synthesis of Oligonucleotides. Glass Ceram. 2019;75(9-10):377-82. doi:10.1007/s10717-019-00089-3
57. Molina AG, Sanghvi YS. Liquid-Phase Oligonucleotide Synthesis: Past, Present, and Future Predictions. Curr Protoc Nucleic Acid Chem. 2019;77(1):e82. doi:10.1002/cpnc.82
58. Sandahl AF, Nguyen TJD, Hansen RA, Johansen MB, Skrydstrup T, Gothelf KV. On-demand synthesis of phosphoramidites. Nat Commun. 2021;12(1):2760. doi:10.1038/s41467-021-22945-z
59. Kaczmarkiewicz A, Nuckowski Ł, Studzińska S, Buszewski B. Analysis of Antisense Oligonucleotides and Their Metabolites with the Use of Ion Pair Reversed-Phase Liquid Chromatography Coupled with Mass Spectrometry. Crit Rev Anal Chem. 2019;49(3):256-70. doi:10.1080/10408347.2018.1517034
60. Cauchon NS, Oghamian S, Hassanpour S, Abernathy M. Innovation in Chemistry, Manufacturing, and Controls—A Regulatory Perspective From Industry. J Pharm Sci. 2019;108(7):2207-37. doi:10.1016/j.xphs.2019.02.007
61. Robinson CJ, Jones C. Quality control and analytical techniques for biopharmaceuticals. Bioanalysis. 2011;3(1):81-95. doi:10.4155/bio.10.161
62. Studzińska S, Nuckowski Ł, Buszewski B. Oligonucleotides Isolation and Separation-A Review on Adsorbent Selection. Int J Mol Sci. 2022;23(17):9546. doi:10.3390/ijms23179546
63. Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 2017;12:1-6. doi:10.1016/j.bdq.2017.04.001
64. Araujo P. Key aspects of analytical method validation and linearity evaluation. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(23):2224-34. doi:10.1016/j.jchromb.2008.09.030
65. Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35(3):238-48. doi:10.1038/nbt.3765
66. Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K, Needleman KIM, et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov. 2020;19(2):93-111. doi:10.1038/s41573-019-0049-9
67. Rossor AM, Reilly MM, Sleigh JN. Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol. 2018;18(2):126-31. doi:10.1136/practneurol-2017-001764
68. Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington´s disease. Lancet Neurol. 2017;16(10):837-47. doi:10.1016/S1474-4422(17)30280-6
69. Dickey AS, La Spada AR. Therapy development in Huntington disease: From current strategies to emerging opportunities. Am J Med Genet A. 2018;176(4):842-61. doi:10.1002/ajmg.a.38494
70. Stahl CM, Feigin A. Medical, Surgical, and Genetic Treatment of Huntington Disease. Neurol Clin. 2020;38(2):367-78. doi:10.1016/j.ncl.2020.01.010
71. Adams D, Koike H, Slama M, Coelho T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat Rev Neurol. 2019;15(7):387-404. doi:10.1038/s41582-019-0210-4
72. Mathew V, Wang AK. Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Des Devel Ther. 2019;13:1515-25. doi:10.2147/DDDT.S162913
73. Keam SJ. Inotersen: First Global Approval. Drugs. 2018;78(13):1371-6. doi:10.1007/s40265-018-0968-5
74. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. New Engl J Med. 2018;379(1):22-31. doi:10.1056/NEJMoa1716793
75. Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. New Engl J Med. 2017;377(2):162-72. doi:10.1056/NEJMra1603471
76. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):17-23. doi:10.1038/nn.3584
77. McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128(8):3558-67. doi:10.1172/JCI99081
78. Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomized, first-in-man study. Lancet Neurol. 2013;12(5):435-42. doi:10.1016/S1474-4422(13)70061-9
79. Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, et al. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron. 2016;90(3):535-50. doi:10.1016/j.neuron.2016.04.006
80. Sardone V, Zhou H, Muntoni F, Ferlini A, Falzarano MF. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules. 2017;22(4):563. doi:10.3390/molecules22040563
81. Rigo F, Chun SJ, Norris DA, Hung G, Lee S, Matson J, et al. Pharmacology of a Central Nervous System Delivered 2´-O-Methoxyethyl-Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates. J Pharmacol Exp Ther. 2014;350(1):46-55. doi:10.1124/jpet.113.212407
82. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC., et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017-26. doi:10.1016/S0140-6736(16)31408-8
83. Hoy SM. Nusinersen: First Global Approval. Drugs. 2017;77(4):473-9. doi:10.1007/s40265-017-0711-7
84. Tsoumpra MK, Fukumoto S, Matsumoto T, Takeda S, Wood MJA, Aoki Y. Peptide-conjugate antisense based spliced-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine. 2019;45:630-45. doi:10.1016/j.ebiom.2019.06.036
85. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251-7. doi:10.1016/S1474-4422(18)30024-3
86. Grages SM, Bell M, Berlau DJ. New and emerging pharmacotherapy for Duchenne muscular dystrophy: a focus on synthetic therapeutics. Expert Opin Pharmacother. 2020;21(7):841-51. doi:10.1080/14656566.2020.1732350
87. Attwood MM, Rask-Andersen M, Schiöth HB. Orphan Drugs and Their Impact on Pharmaceutical Development. Trends Pharmacol Sci. 2018;39(6):525-35. doi:10.1016/j.tips.2018.03.003
88. Hwang J, Yokota T. Recent advancements in exon-skipping therapies using antisense oligonucleotides and genome editing for the treatment of various muscular dystrophies. Expert Rev Mol Med. 2019;21:e5. doi:10.1017/erm.2019.5
89. Heo YA. Golodirsen: First Approval. Drugs. 2020;80(3):329-33. doi:10.1007/s40265-020-01267-2
90. Hosten TA, Zhao K, Han HQ, Liu G, He XH. Alicarforsen: An Emerging Therapeutic Agent for Ulcerative Colitis and Refractory Pouchitis. Gastroenterology Res. 2014;7(2):51-5. doi:10.14740/gr599w
91. Greuter T, Vavricka SR, Biedermann L, Pilz J, Borovicka J, Seibold F, et al. Alicaforsen, an Antisense Inhibitor of Intercellular Adhesion Molecule-1, in the Treatment for Left-Sided Ulcerative Colitis and Ulcerative Proctitis. Dig Dis. 2018;36(2):123-9. doi:10.1159/000484979
92. Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of Antisense Drugs. Annu Rev Pharmacol Toxicol. 2017;57:81-105. doi:10.1146/annurev-pharmtox-010716-104846
93. Le BT, Raguraman P, Kosbar TR, Fletcher S, Wilton SD, Veedu RN. Antisense Oligonucleotides Targeting Angiogenic Factors as Potential Cancer Therapeutics. Mol Ther Nucleic Acids. 2019;14:142-57. doi:10.1016/j.omtn.2018.11.007
94. Tarrado-Castellarnau M, de Atauri P, Cascante M. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget. 2016;7(38):62726-53. doi:10.18632/oncotarget.10911
95. Shimojo M, Kasahara Y, Inoue M, Tsunoda SI, Shudo Y, Kurata T, Obika S. A gapmer antisense oligonucleotide targeting SRRM4 is a novel therapeutic medicine for lung cancer. Sci Rep. 2019;9(1):7618. doi:10.1038/s41598-019-43100-1
96. Zhang X, Liu C, Li K, Wang K, Zhang Q, Cui Y. Meta-analysis of efficacy and safety of custirsen in patients with metastatic castration-resistant prostate cancer. Medicine. 2019;98(6):e14254. doi:10.1097/MD.0000000000014254
97. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7(314):314ra185. doi:10.1126/scitranslmed.aac5272
98. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research. Cancer Discov. 2014;4(9):998-1013. doi:10.1158/2159-8290.CD-14-0001
99. Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, Kim Y, et al. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer. 2018;6(1):119. doi:10.1186/s40425-018-0436-5
100. Yu EY, Ellard SL, Hotte SJ, Gingerich JR, Joshua AM, Gleave ME. A randomized phase 2 study of a HSP27 targeting antisense, apatorsen with prednisone versus predisone alone, in patients with metastatic castration resistant prostate cancer. Invest New Drugs. 2018;36(2):278-87. doi:10.1007/s10637-017-0553-x
101. van der Toom EE, Axelrod HD, de la Rosette JJ, de Reijke TM, Pienta KJ, Valkenburg C. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol. 2019;16(1):7-22. doi:10.1038/s41585-018-0119-5
102. Ohanian M, Ashizawa AT, Garcia-Manero G, Pemmaraju N, Kadia T, Jabbour E, et al. Liposomal Grb2 antisense oligodeoxynucleotide (BP1001) in patients with refractory or relapsed haematological malignancies: a single-centre, open-label, dose-escalation, phase 1/1b trial. Lancet Haematol. 2018;5(4):e136-46. doi:10.1016/S2352-3026(18)30021-8
103. Moreno PMD, Pêgo AP. Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Front Chem. 2014;2:87. doi:10.3389/fchem.2014.00087
104. Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol. 2016;39(5):397-410. doi:10.1007/s13402-016-0281-9
105. Zeng F, Harris RC. Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol. 2014;28:2-11. doi:10.1016/j.semcdb.2014.01.011
106. Ishii Y, Hamashima T, Yamamoto S, Sasahara M. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathol Int. 2017;67(5):235-46. doi:10.1111/pin.12530
107. Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration and tumours. J Biochem. 2014;156(1):1-10. doi:10.1093/jb/mvu031

Authors

Ariana Araya
David Arias
Karla Coto
María Rebeca López
Joselyn Rivera
Juan José Mora
juanjomoro@gmail.com (Primary Contact)
Author Biographies

Ariana Araya, Universidad de Costa Rica

Department of Industrial Pharmacy, Universidad de Costa Rica, San José, Costa Rica

David Arias, Universidad de Costa Rica

Department of Industrial Pharmacy, Universidad de Costa Rica, San José, Costa Rica

Karla Coto, Universidad de Costa Rica

Department of Industrial Pharmacy, Universidad de Costa Rica, San José, Costa Rica

María Rebeca López, Universidad de Costa Rica

Department of Industrial Pharmacy, Universidad de Costa Rica, San José, Costa Rica

Joselyn Rivera, Universidad de Costa Rica

Department of Industrial Pharmacy, Universidad de Costa Rica, San José, Costa Rica

Juan José Mora, Universidad de Costa Rica

Department of Industrial Pharmacy, Universidad de Costa Rica, San José, Costa Rica

1.
Araya A, Arias D, Coto K, López MR, Rivera J, Mora JJ. Antisense Oligonucleotides: Concepts and Pharmaceutical Applications. Borneo J Pharm [Internet]. 2023Feb.28 [cited 2024Nov.15];6(1):41-57. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/2092

Article Details

Most read articles by the same author(s)