Immunity-Boosting Natural Herbs to Combat COVID-19 Pandemic: A Narrative Review

Saurabh Nimesh (1) , Muhammad Akram (2) , Md. Iftekhar Ahmad (3) , Arshad Ahmad (4) , Pratibha Kumari (5) , Manohar Lal (6)
(1) Shri Gopichand College of Pharmacy , India
(2) Government College University Faisalabad , Pakistan
(3) Shri Gopichand College of Pharmacy , India
(4) Shri Gopichand College of Pharmacy , India
(5) Galgotias University , India
(6) University of Delhi , India

Abstract

Coronaviruses cause some severe forms of respiratory infections such as Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Coronavirus disease 2019 (Covid-19). These viruses cause diarrhea in pigs and cows and upper respiratory disease in chickens, while other symptoms may differ. In humans, a total of six coronaviruses have been identified HCoVs-NL63, HCoVs-OC43, HCoVs-229E, HCoVs-HKU1, MERS-CoV, and SARS-CoV. The world health organization (WHO) has done a great deal of hard work regarding combating the monstrous effects of this virus. So far, no specific antiviral drugs have been developed for the treatment of Covid-19. Therefore, the medicinal plants used for the previous epidemic outbreaks are getting attention for their potential treatment against the virus. It has been reported that 70 to 80% of people in developing countries depend on medicinal plants or phytomedicine compared to allopathic drugs for their primary healthcare. The south Asian subcontinents have used almost up to 25,000 formulations and extracts obtained from medicinal plants for treatment in folk medicine. The present review discusses an overview of the coronavirus, its immune responses, and some immunity-boosting herbs to combat Covid-19.

Full text article

Generated from XML file

References

1. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6. doi:10.1007/s12098-020-03263-6
2. Ahmad A, Rehman MU, Alkharfy KM. An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections. Eur Rev Med Pharmacol Sci. 2020;24(7):4030-4. doi:10.26355/eurrev_202004_20873
3. Neiderud CJ. How urbanization affects the epidemiology of emerging infectious diseases. Infect Ecol Epidemiol. 2015;5:27060. doi:10.3402/iee.v5.27060
4. Čivljak R, Markotić A, Kuzman I. The third coronavirus epidemic in the third millennium: what’s next? Croat Med J. 2020;61(1):1-4. doi:10.3325/cmj.2020.61.1
5. Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951. doi:10.1016/j.ijantimicag.2020.105951
6. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11. doi:10.1186/s40779-020-00240-0
7. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. doi:10.1128/jvi.00127-20
8. Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254-66. doi:10.1016/j.cca.2020.05.044
9. Bazant MZ, Bush JWM. A guideline to limit indoor airborne transmission of COVID-19. Proc Natl Acad Sci U S A. 2021;118(17):e2018995118. doi:10.1073/pnas.2018995118
10. Balachandar V, Mahalaxmi I, Kaavya J, Vivekanandhan G, Ajithkumar S, Arul N, et al. COVID-19: emerging protective measures. Eur Rev Med Pharmacol Sci. 2020;24(6):3422-5. doi:10.26355/eurrev_202003_20713
11. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi:10.1016/j.ijantimicag.2020.105949
12. Yavuz SŞ, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci. 2020;50(SI-1):611-9. doi:10.3906/sag-2004-145
13. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi:10.1016/s0140-6736(20)30628-0
14. Li G, Clercq ED. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19(3):149-50. doi:10.1038/d41573-020-00016-0
15. Jean SS, Lee, PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-43. doi:10.1016/j.jmii.2020.03.034
16. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-49. doi:10.1111/j.1476-5381.2010.01127.x
17. Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, Zamalloa-Cornejo R, Quispe-Florez M, Frisancho-Triveño Z, et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS One. 2021;16(9):e0257165. doi:10.1371/journal.pone.0257165
18. Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of Ayurveda. Pharmacogn Rev. 2014;8(16):73-80. doi:10.4103/0973-7847.134229
19. Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem. 2021;476(6):2345-64. doi:10.1007/s11010-021-04084-7
20. Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020;12(3):e7423. doi:10.7759/cureus.7423
21. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164. doi:10.1016/b978-0-12-385885-6.00009-2
22. Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect Genet Evol. 2020;79:104211. doi:10.1016/j.meegid.2020.104211
23. Payne S. Viruses: From Understanding to Investigation. Cambridge (MA): Academic Press; 2017. Chapter 17, Family Coronaviridae. Viruses; p.149-58. doi:10.1016/B978-0-12-803109-4.00017-9
24. Hirose R, Ikegaya H, Naito Y, Watanabe N, Yoshida T, Bandou R, et al. Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin Infect Dis. 2020;ciaa1517. doi:10.1093/cid/ciaa1517
25. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. doi:10.1186/s12985-019-1182-0
26. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80. doi:10.1016/j.cell.2020.02.052
27. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451-4. doi:10.1038/s41418-020-0530-3
28. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24:422. doi:10.1186/s13054-020-03120-0
29. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269-70. doi:10.1038/s41577-020-0308-3
30. Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26(4):453-5. doi:10.1038/s41591-020-0819-2
31. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
32. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. doi:10.1093/cid/ciaa248
33. Salciccioli JD, Marshall DC, Pimentel MAF, Santos MD, Pollard T, Celi LA, et al. The association between the neutrophil-to-lymphocyte ratio and mortality in critical illness: an observational cohort study. Crit Care. 2015;19(1):13. doi:10.1186/s13054-014-0731-6
34. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. doi:10.12932/ap-200220-0772
35. Amawi H, Abu Deiab GI, Aljabali AAA, Dua K, Tambuwala MM. COVID-19 pandemic: an overview of epidemiology, pathogenesis, diagnostics and potential vaccines and therapeutics. Ther Deliv. 2020;11(4):245-68. doi:10.4155/tde-2020-0035
36. Baj J, Karakuła-Juchnowicz H, Teresiński G, Buszewicz G, Ciesielka M, Sitarz E, et al. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J Clin Med. 2020;9(6):1753. doi:10.3390/jcm9061753
37. He X, Cheng X, Feng X, Wan H, Chen S, Xiong M. Clinical Symptom Differences Between Mild and Severe COVID-19 Patients in China: A Meta-Analysis. Front Public Health. 2020;8:561264. doi:10.3389/fpubh.2020.561264
38. La Marca A, Capuzzo M, Paglia M, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41(3):483-99. doi:10.1016/j.rbmo.2020.06.001
39. Martinez RM. Clinical Samples for SARS-CoV-2 Detection: Review of the Early Literature. Clin Microbiol Newsl. 2020;42(15):121-7. doi:10.1016/j.clinmicnews.2020.07.001
40. Li C, Zhao C, Bao J, Tang B, Wang Y, Gu B. Laboratory diagnosis of coronavirus disease-2019 (COVID-19). Clin Chim Acta. 2020;510:35-46. doi:10.1016/j.cca.2020.06.045
41. Liu X, Feng J, Zhang Q, Guo D, Zhang L, Suo T, et al. Analytical comparisons of SARS-COV-2 detection by qRT-PCR and ddPCR with multiple primer/probe sets. Emeg Microbes Infect. 2020;9(1):1175-9. doi:10.1080/22221751.2020.1772679
42. Suo T, Liu X, Feng J, Guo M, Hu W, Guo D, et al. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg Microbes Infect. 2020;9(1):1259-68. doi:10.1080/22221751.2020.1772678
43. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, et al. Can Chinese Medicine Be Used for Prevention of Corona Virus Disease 2019 (COVID-19)? A Review of Historical Classics, Research Evidence and Current Prevention Programs. Chin J Integr Med. 2020;26(4):243-50. doi:10.1007/s11655-020-3192-6
44. Lin LL, Shan JJ, Xie T, Xu JY, Shen CS, Di LQ, et al. Application of Traditional Chinese Medical Herbs in Prevention and Treatment of Respiratory Syncytial Virus. Evid Based Complement Alternat Med. 2016;2016:6082729. doi:10.1155/2016/6082729
45. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2013;4:177. doi:10.3389/fphar.2013.00177
46. Wink M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines. 2015;2(3):251-86. doi:10.3390/medicines2030251
47. Fair RJ, Tor Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect Medicin Chem. 2014;6:25-64. doi:10.4137/PMC.S14459
48. Jiang X, Kanda T, Nakamoto S, Saito K, Nakamura M, Wu S, et al. The JAK2 inhibitor AZD1480 inhibits hepatitis A virus replication in Huh7 cells. Biochem Ciophys Res Commun. 2015;458(4):908-12. doi:10.1016/j.bbrc.2015.02.058
49. Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, et al. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res. 2018;32(5):811-22. doi:10.1002/ptr.6024
50. Ravishankar B, Shukla VJ. Indian systems of medicine: a brief profile. Afr J Tradit Complement Altern Med. 2007;4(3):319-37. doi:10.4314/ajtcam.v4i3.31226
51. Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Discord. 2020;50(8):2740-64. doi:10.1007/s10803-020-04381-y
52. Tabuti JRS, Lye KA, Dhillion SS. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. J Ethnopharmacol. 2003;88(1):19-44. doi:10.1016/s0378-8741(03)00161-2
53. Wang B, Kovalchuk A, Li D, Rodriguez-Juarez R, Ilnytskyy Y, Kovalchuk I, et al. In search of preventive strategies: novel high-CBD Cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging. 2020;12(22):22425-44. doi:10.18632/aging.202225
54. Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020;214:107618. doi:10.1016/j.pharmthera.2020.107618
55. Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Process. 2020;8(5):549. doi:10.3390/pr8050549
56. Agrawal PK, Agrawal C, Blunden G. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Nat Prod Commun. 2021;16(10):1-15. doi:10.1177/1934578X211042540
57. Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda. Futur J Pharm Sci. 2021;7(1):13. doi:10.1186/s43094-020-00171-6
58. Banerjee R, Perera L, Tillekeratne LMV. Potential SARS-CoV-2 main protease inhibitors. Drug Discov Today. 2021;26(3):804-16. doi:10.1016/j.drudis.2020.12.005
59. Piccolella S, Crescente G, Faramarzi S, Formato M, Pecoraro MT, Pacifico S. Polyphenols vs. Coronaviruses: How Far Has Research Moved Forward? Molecules. 2020;25(18):4103. doi:10.3390/molecules25184103
60. Rathinavel T, Palanisamy M, Palanisamy S, Subramaniam A, Thangaswamy S. Phytochemical 6-Gingerol – A promising Drug of choice for COVID-19. Int J Adv Sci Eng. 2020;6(4):1482-9. doi:10.29294/IJASE.6.4.2020.1482-1489
61. Us-Medina U, Millán-Linares MdC, Arana-Argaes VE, Segura-Campos MR. Actividad antioxidante y antiinflamatoria in vitro de extractos de chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst). Nutr Hosp. 2020;37(1):46-55. doi:10.20960/nh.02752
62. Liu H, Ye F, Sun Q, Liang H, Li C, Li S, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem. 2021;36(1):497-503. doi:10.1080/14756366.2021.1873977
63. Borenstein R, Hanson BA, Markosyan RM, Gallo ES, Narasipura SD, Bhutta M, et al. Ginkgolic acid inhibits fusion of enveloped viruses. Sci Rep. 2020;10:4746. doi:10.1038/s41598-020-61700-0
64. Verma S, Patel CN, Chandra M. Identification of novel inhibitors of SARS-CoV-2 main protease (M pro) from Withania sp. by molecular docking and molecular dynamics simulation. J Comput Chem. 2021;42(26):1861-72. doi:10.1002/jcc.26717
65. Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Loan HTP, et al. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega. 2020;5(14):8312-20. doi:10.1021/acsomega.0c00772
66. Orhan IE, Deniz FSS. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2? Nat Prod Biprospect. 2020;10(4):171-86. doi:10.1007/s13659-020-00250-4
67. Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol. 2006;33(7):612-6. doi:10.1111/j.1440-1681.2006.04415.x
68. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78(20):11334-9. doi:10.1128/jvi.78.20.11334-11339.2004
69. Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem. 2016;31(1):23-30. doi:10.3109/14756366.2014.1003215
70. Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007;75(3):179-87. doi:10.1016/j.antiviral.2007.03.003
71. Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des. 2019;94(6):2023-30. doi:10.1111/cbdd.13604
72. Manuja A, Rathore N, Choudhary S, Kumar B. Phytochemical Screening, Cytotoxicity and Anti-inflammatory Activities of the Leaf Extracts from Lawsonia inermis of Indian Origin to Explore their Potential for Medicinal Uses. Med Chem. 2021;17(6):576-86. doi:10.2174/1573406416666200221101953
73. Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine. 2021;85:153286. doi:10.1016/j.phymed.2020.153286
74. Kim CH. Anti-SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Front Pharmacol. 2021;12:590509. doi:10.3389/fphar.2021.590509
75. Walter TM, Justinraj CS, Nandini VS. Effect of Nilavembu kudineer in the Prevention and Management of COVID -19 by inhibiting ACE2 Receptor. Siddha Pap. 2020;15(2):1-8.

Authors

Saurabh Nimesh
sk4676549@gmail.com (Primary Contact)
Muhammad Akram
Md. Iftekhar Ahmad
Arshad Ahmad
Pratibha Kumari
Manohar Lal
1.
Nimesh S, Akram M, Ahmad MI, Ahmad A, Kumari P, Lal M. Immunity-Boosting Natural Herbs to Combat COVID-19 Pandemic: A Narrative Review. Borneo J Pharm [Internet]. 2021Nov.30 [cited 2024Dec.21];4(4):260-72. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/2534

Article Details