Identification of Candesartan Cilexetil-L-Arginine Co-amorphous Formation and Its Solubility Test

Fikri Alatas (1) , Erina Sifa Mutmainah (2) , Hestiary Ratih (3) , Titta Hartyana Sutarna (4) , Sundani Nurono Soewandhi (5)
(1) Universitas Jenderal Achmad Yani , Indonesia
(2) Universitas Jenderal Achmad Yani , Indonesia
(3) Universitas Jenderal Achmad Yani , Indonesia
(4) Universitas Jenderal Achmad Yani , Indonesia
(5) Institut Teknologi Bandung , Indonesia

Abstract

The formation of co-amorphous is one alternative that can be attempted to enhance the solubility of drugs. The study aimed to identify the co-amorphous formation between candesartan cilexetil (CAN) and l-arginine (ARG) and to know its effect on the solubility and dissolution rate of candesartan cilexetil. Initial prediction of co-crystal formation was undertaken by observing differences in crystal morphology between the candesartan cilexetil-l-arginine (CAN-ARG) mixture and each of its initial components due to crystallization in ethanol. The CAN-ARG co-amorphous was produced by the liquid-assisted grinding (LAG) method with the same molar ratio of the CAN and ARG mixture using ethanol as solvent. The co-amorphous formation of CAN-ARG was identified by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) methods. The solubility and dissolution test was performed to know the impact of the co-amorphous CAN-ARG formation. The PXRD pattern of CAN-ARG of LAG result showed a very low peak intensity compared to pure CAN and ARG. The DSC thermogram of the CAN-ARG LAG result does not show any sharp endothermic peaks. The PXRD and DSC results reveal that CAN and ARG can form co-amorphous. The solubility and dissolution rate of candesartan cilexetil in co-amorphous CAN-ARG was better than that of pure CAN. It can be concluded, liquid-assisted grinding of CAN-ARG mixture is identified to form co-amorphous which has an impact on increasing the solubility and dissolution rate of candesartan cilexetil.

Full text article

Generated from XML file

References

1. Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537-64. doi:10.1016/j.apsb.2021.03.030
2. Newman A, Reutzel-Edens SM, Zogra G. Coamorphous active pharmaceutical ingredient-small molecule mixtures: considerations in the choice of coformers for enhancing dissolution and oral bioavailability. J Pharm Sci. 2018;107(1):5-17. doi:10.1016/j.xphs.2017.09.024
3. Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm. 2020;586:119560. doi:10.1016/j.ijpharm.2020.119560
4. Jog R, Gokhale R, Burgess DJ. Solid state drug-polymer miscibility studies using the model drug ABT-102. Int J Pharm. 2016;509(1–2):285–95. doi:10.1016/j.ijpharm.2016.05.068
5. Skieneh JM, Sathisaran I, Dalvi SV, Rohani S. Co-amorphous form of curcumin-folic acid dihydrate with increased dissolution rate. Cryst Growth Des. 2017;17(12):6273–80. doi:10.1021/acs.cgd.7b00947
6. Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B. 2019;9(1):19–35. doi:10.1016/j.apsb.2018.08.002
7. Karagianni A, Kachrimanis K, Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018;10(3):98. doi:10.3390/pharmaceutics10030098
8. Ranjan S, Devarapalli R, Kundu S, Vangala VR, Ghosh A, Reddy CM. Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies. J Mol Struct. 2017;1133:405–10. doi:10.1016/j.molstruc.2016.12.019
9. Nugrahani I, Jessica MA. Amino acids as the potential co-former for co-crystal development: a review. Molecules. 2021;26(11):3279. doi:10.3390/molecules26113279
10. Lenz E, Jensen KT, Blaabjerg LI, Knop K, Grohganz H, Löbmann K, et al. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine. Eur J Pharm Biopharm. 2015;96:44-52. doi:10.1016/j.ejpb.2015.07.011
11. Petry I, Löbmann K, Grohganz H, Rades T, Leopold CS. In situ co-amorphisation of arginine with indomethacin or furosemide during immersion in an acidic medium – A proof of concept study. Eur J Pharm Biopharm. 2018;133:151-60. doi:10.1016/j.ejpb.2018.10.011
12. Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: Enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8(5):1919–28. doi:10.1021/mp2002973
13. Ojarinta R, Lerminiaux L, Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. Int J Pharm. 2017;532(1):289–98. doi:10.1016/j.ijpharm.2017.09.015
14. Ruponen M, Rusanen H, Laitinen R. Dissolution and permeability properties of co-amorphous formulations of hydrochlorothiazide. J Pharm Sci. 2020;109(7): 2252–61. doi:10.1016/j.xphs.2020.04.008
15. Aljohani M, Macfhionnghaile P, McArdle P, Erxleben A. Investigation of the formation of drug-drug cocrystals and coamorphous systems of the antidiabetic drug gliclazide. Int J Pharm. 2019;561:35–42. doi:10.1016/j.ijpharm.2019.02.024
16. Jung S, Choi I, Kim IW. Liquid-assisted grinding to prepare a cocrystal of adefovir dipivoxil thermodynamically less stable than its neat phase. Crystals. 2015;5(4):583–91. doi:10.3390/cryst5040583
17. Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao W, et al. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol. 2019;50:248–54. doi:10.1016/j.jddst.2019.02.004
18. Alatas F, Aprilliana M, Gozali D. The preparation and solubility of loratadine-fumaric acid binary mixture. Asian J Pharm Clin Res. 2017;10(1):331-4. doi:10.22159/ajpcr.2017.v10i1.15400
19. Haneef J, Chadha R. Drug-drug multicomponent solid forms: Cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech. 2017;18(6):2279–90. doi:10.1208/s12249-016-0701-1
20. Moinuddin SM, Ruan S, Huang Y, Gao Q, Shi Q, Cai B, et al. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile. Int J Pharm. 2017;532(1):393-400. doi:10.1016/j.ijpharm.2017.09.020
21. Mithu MDSH, Ross SA, Hurt AP, Douroumis D. Effect of mechanochemical grinding conditions on the formation of pharmaceutical cocrystals and co-amorphous solid forms of ketoconazole – Dicarboxylic acid. J Drug Deliv Sci Technol. 2021;63:102508. doi:10.1016/j.jddst.2021.102508
22. Kasten G, Lobo L, Dengale S, Grohganz H, Rades T, Löbmann K. In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-arginine. Eur J Pharm Biopharm. 2018;132:192–9. doi:10.1016/j.ejpb.2018.09.024
23. Zhang Y, Wang L, Dai J, Liu F, Li Y, Wu Z, et al. The comparative study of cocrystal/salt in simultaneously improving solubility and permeability of acetazolamide. J Mol Struct. 2019;1184:225-32. doi:10.1016/j.molstruc.2019.01.090
24. United States Pharmacopeia 40 National Formulary 35 [Internet]. Rockville (MA): United States Pharmacopeial Convention; 2017. p. 3156–7
25. Bowmaker GA. Solvent-assisted mechanochemistry. Chem Commun. 2013;49(4):334–48. doi:10.1039/c2cc35694e
26. Matsunaga H, Eguchi T, Nishijima K, Enomoto T, Sasaoki K, Nakamura N. Solid-state characterization of candesartan cilexetil (TCV-116): Crystal structure and molecular mobility. Chem Pharm Bull. 1999;47(2):182–6. doi:10.1248/cpb.47.182
27. Chen X, Li D, Zhang H, Duan Y, Huang Y. Sinomenine-phenolic acid coamorphous drug systems: Solubilization, sustained release, and improved physical stability. Int J Pharm. 2021;598:120389. doi:10.1016/j.ijpharm.2021.120389
28. de Campos DP, Silva-Barcellos NM, Lima RR, Savedra RML, Siqueira MF, Yoshida MI, et al. Polymorphic and quantum chemistry characterization of candesartan cilexetil: importance for the correct drug classification According to Biopharmaceutics Classification System. AAPS PharmSciTech. 2018;19(7):3019–28. doi:10.1208/s12249-018-1129-6
29. Hancoock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12. doi:10.1021/js9601896
30. Huang Y, Zhang Q, Wang J-R, Lin K-L, Mei X. Amino acids as co-amorphous excipients for tackling the poor aqueous solubility of valsartan. Pharm Dev Technol. 2017;22(1):69–76. doi:10.3109/10837450.2016.1163390
31. Figueroa-campos A, Sánchez-Dengra B, Merino V, Dahan A, González-Álvarez I, García-Arieta A, et al. Candesartan cilexetil in vitro–in vivo correlation: predictive dissolution as a development tool. Pharmaceutics. 2020;12(7):633. doi:10.3390/pharmaceutics12070633

Authors

Fikri Alatas
fikri.alatas@lecture.unjani.ac.id (Primary Contact)
Erina Sifa Mutmainah
Hestiary Ratih
Titta Hartyana Sutarna
Sundani Nurono Soewandhi
1.
Alatas F, Mutmainah ES, Ratih H, Sutarna TH, Soewandhi SN. Identification of Candesartan Cilexetil-L-Arginine Co-amorphous Formation and Its Solubility Test. Borneo J Pharm [Internet]. 2022Feb.28 [cited 2024Mar.29];5(1):27-34. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/2942

Article Details