Solubility and Scale-Up Potency of Norfloxacin-Urea Co-Crystal Prepared by Ultrasound-Assisted Slurry Co-Crystallization Method

Fikri Alatas (1) , Dery Stiawan (2) , Nur Achsan Al-Hakim (3)
(1) Universitas Jenderal Achmad Yani , Indonesia
(2) Universitas Jenderal Achmad Yani , Indonesia
(3) Universitas Jenderal Achmad Yani , Indonesia

Abstract

Norfloxacin is an antimicrobial in treating urinary tract infections with low water solubility. This study aims to know the effect of norfloxacin-urea co-crystal formation on the solubility of norfloxacin and the potential for scale-up when prepared by ultrasound-assisted slurry co-crystallization method. Identification of the screening result of the norfloxacin-urea (1 : 1) co-crystal formation by a wet grinding method using an ethanol-acetone (1 : 1) solvent mixture was performed by powder X-ray diffractometer (PXRD). The ultrasound-assisted slurry co-crystallization method was used for co-crystal formation with five-fold the weight of norfloxacin and urea than the wet grinding method. The co-crystal product prepared by the ultrasound-assisted slurry co-crystallization method was observed for its crystal morphology and characterized by PXRD and differential scanning calorimeter (DSC). Solubility and dissolution tests in water and acetate buffer solution pH 4.0 were used to evaluate the physicochemical properties. Identification of co-crystal screening by PXRD revealed the formation of norfloxacin-urea co-crystal. The PXRD pattern of the norfloxacin-urea co-crystal product prepared by the ultrasound-assisted slurry co-crystallization method was similar to the wet grinding method. Norfloxacin-urea co-crystal has a different melting point and crystal morphology from pure norfloxacin and urea. The solubility and dissolution rate of norfloxacin-urea co-crystal was higher in water and not significantly different in acetate buffer solution pH 4.0 compared to pure norfloxacin. This study showed that the norfloxacin-urea co-crystal formation could enhance the solubility of norfloxacin in water and had the potential for scale-up when prepared using the ultrasound-assisted slurry co-crystallization method.

Full text article

Generated from XML file

References

1. Gadade DD, Sarda K, Shahi SR. Investigation and optimization of the effect of polymers on drug release of norfloxacin from floating tablets. Polim Med. 2016;46(2):117–27. doi:10.17219/pim/68170
2. Vijan LE, Conci M. Absorption study of norfloxacin - DNA interaction. Macromol Symp. 2008;265(1):260–7. doi:10.1002/masy.200850529
3. Ferreira PO, de Almeida AC, dos Santos ÉC, Droppa R, Ferreira FF, Kogawa AC, et al. A norfloxacin-nicotinic acid cocrystal: Mechanochemical synthesis, thermal and structural characterization and solubility assays. Thermochim Acta. 2020;694:178782. doi:10.1016/j.tca.2020.178782
4. Fael H, Barbas R, Prohens R, Rafols C, Fuguet E. Synthesis and characterization of a new norfloxacin/resorcinol cocrystal with enhanced solubility and dissolution profile. Pharmaceutics. 2022;14(1):49. doi:10.3390/pharmaceutics14010049
5. Basavoju S, Bostrom D, Velaga P. Pharmaceutical cocrystals and salts of norfloxacin. Cryst Growth Des. 2006;6(12):2699–708. doi:10.1021/cg060327x
6. Thayyil AR, Juturu T, Nayak S, Kamath S. Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications. Adv Pharm Bull. 2020;10(2):203–12. doi:10.34172/apb.2020.024
7. Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537–64. doi:10.1016/j.apsb.2021.03.030
8. Erxleben A. Cocrystal applications in drug delivery. Pharmaceutics. 2020;12(9):834–6. doi:10.3390/pharmaceutics12090834
9. Alatas F, Ratih H, Kurnia H, Soewandhi SN. Solubility enhancement of clozapine through co-crystal formation with isonicotinamide. Indones J Pharm. 2019;2(1):1–6. doi:10.24198/idjp.v2i1.23957
10. Ross SA, Hurt AP, Antonijevic M, Bouropoulos N, Ward A, Basford P, et al. Continuous manufacture and scale-up of theophylline- nicotinamide cocrystals. Pharmaceutics. 2021;13(3):419. doi:10.3390/pharmaceutics13030419
11. am Ende DJ, Anderson SR, Salan JS. Development and scale-up of cocrystals using resonant acoustic mixing. Org Process Res Dev. 2014;18(2):331–41. doi:10.1021/op4003399
12. Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals : A review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018;18(10):6370–87. doi:10.1021/acs.cgd.8b00933
13. Pawar N, Saha A, Nandan N, Parambil J V. Solution cocrystallization: a scalable approach for cocrystal production. Crystals. 2021;11(3):303. doi:10.3390/cryst11030303
14. Apshingekar PP, Aher S, Kelly AL, Brown EC, Paradkar A. Synthesis of caffeine/maleic acid co-crystal by ultrasound-assisted slurry co-crystallization. J Pharm Sci. 2017;106(1):66–70. doi:10.1016/j.xphs.2016.09.009
15. Friscic T, Childs SL, Rizvi SAA, Jones W. The role of solvent in mechanochemical and sonochemical cocrystal formation : a solubility-based approach for predicting cocrystallisation outcome. Cryst Eng Comm. 2009;11(3):418–26. doi:10.1039/b815174a
16. Song JX, Yan Y, Yao J, Chen JM, Lu TB. Improving the Solubility of Lenalidomide via Cocrystals. Cryst Growth Des. 2014;14(6):3069–77. doi:10.1021/cg500327s
17. Allu S, Bolla G, Tothadi S, Nangia AK. Novel pharmaceutical cocrystals and salts of bumetanide. Cryst Growth Des. 2020;20(2):793–803. doi:10.1021/acs.cgd.9b01195
18. Leng F, Robeyns K. Urea as a cocrystal former — Study of 3 urea based pharmaceutical cocrystals. Pharmaceutics. 2021;13(5):671. doi:10.3390/pharmaceutics13050671
19. Maddileti D, Jayabun SK, Nangia A. Soluble cocrystals of the xanthine oxidase inhibitor febuxostat. Cryst Growth Des. 2013;13(7):3188–96. doi:10.1021/cg400583z
20. Yamamoto K, Tsutsumi S, Ikeda Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int J Pharm. 2012;437(1–2):162–71. doi:10.1016/j.ijpharm.2012.07.038
21. Haskins MM, Zaworotko MJ. Screening and preparation of cocrystals: A comparative study of mechanochemistry vs slurry methods. Cryst Growth Des. 2021;21(7):4141–50. doi:10.1021/acs.cgd.1c00418
22. de Campos DP, Silva-Barcellos NM, Lima RR, Savedra RML, Siqueira MF, Yoshida MI, et al. Polymorphic and quantum chemistry characterization of candesartan cilexetil: importance for the correct drug classification According to Biopharmaceutics Classification System. AAPS PharmSciTech. 2018;19(7):3019–28. doi:10.1208/s12249-018-1129-6
23. Convention USP. USP 29, NF 24: The United States Pharmacopeia, the National Formulary. Rockville, MD: United States Pharmacopeial Convention; 2006. p. 1560.
24. Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals-an opportunity for drug product enhancement. Expert Opin Drug Deliv. 2009;6(4):333–41. doi:10.1517/17425240902828304
25. Hasa D, Jones W. Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Adv Drug Deliv Rev. 2017;117:147–61. doi:10.1016/j.addr.2017.05.001
26. Alatas F, Ratih H, Sutarna TH, Wardhana YW, Tereslina D, Soewandhi SN. Preparation and characterization of fluconazole-resorcinol co-crystal. J Ilmu Kefarmasian Indones. 2020;18(2):177–83. doi:10.35814/jifi.v18i2.779
27. House KA, House JE. Thermodynamics of dissolution of urea in water, alcohols, and their mixtures. J Mol Liq. 2017;242:428–32. doi:10.1016/j.molliq.2017.07.020
28. Zhang CL, Li BY, Wang Y. Solubilities of norfloxacin in ethanol, 1-propanol, acetone, and chloroform from 294.15 to 318.15k. Can J Chem Eng. 2010;88(1):63–6. doi:10.1002/cjce.20247
29. Mukaida M, Watanabe Y, Sugano K, Terada K. Identification and physicochemical characterization of caffeine–citric acid co-crystal polymorphs. Pharm Sci. 2015;79:61–6. doi:10.1016/j.ejps.2015.09.002
30. El-Gizawy SA, Osman MA, Arafa MF, El Maghraby GM. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int J Pharm. 2015;478(2):773–8. doi:10.1016/j.ijpharm.2014.12.037
31. Aher S, Dhumal R, Mahadik K, Paradkar A, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur J Pharm Sci. 2010;41(5):597–602. doi:10.1016/j.ejps.2010.08.012
32. Klisurića OR, Rakića SJ, Cvetinov MJ, Stojanović MM, Nikolić AR, Santa SSJ, et al. X-ray diffraction characterization of different polymorphyc forms of clopidogrel bisulphate in substance and pharmaceutical dosage form. J Res Phys. 2013;37(1):55–60. doi:10.2478/jrp-2013-0006
33. Paczkowska M, Wiergowska G, Miklaszewski A, Krause A, Mroczkowka M, Zalewski P, et al. The analysis of the physicochemical properties of benzocaine polymorphs. Molecules. 2018;23(7):1737. doi:10.3390/molecules23071737
34. Barbas R, Martí F, Prohens R, Puigjaner C. Polymorphism of norfloxacin: Evidence of the enantiotropic relationship between polymorphs A and B. Cryst Growth Des. 2006;6(6):1463–7. doi:10.1021/cg060101u
35. Bavishi DD, Borkhataria CH. Spring and parachute: How cocrystals enhance solubility. Prog Cryst Growth Charact Mater. 2016;62(3):1–8. doi:10.1016/j.pcrysgrow.2016.07.001
36. Ahumada AA, Seeck J, Allemandi D, Manzo RH. The pH/solubility profile of norfloxacin. STP Pharm Sci. 1993;3(3):250–3.

Authors

Fikri Alatas
fikri.alatas@lecture.unjani.ac.id (Primary Contact)
Dery Stiawan
Nur Achsan Al-Hakim
Author Biographies

Fikri Alatas, Universitas Jenderal Achmad Yani

Department of Pharmaceutics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Dery Stiawan, Universitas Jenderal Achmad Yani

Department of Pharmaceutics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

Nur Achsan Al-Hakim, Universitas Jenderal Achmad Yani

Department of Pharmaceutics, Universitas Jenderal Achmad Yani, Cimahi, West Java, Indonesia

1.
Alatas F, Stiawan D, Al-Hakim NA. Solubility and Scale-Up Potency of Norfloxacin-Urea Co-Crystal Prepared by Ultrasound-Assisted Slurry Co-Crystallization Method. Borneo J Pharm [Internet]. 2023May31 [cited 2025Jan.2];6(2):158-67. Available from: https://journal.umpr.ac.id/index.php/bjop/article/view/4173

Article Details

Most read articles by the same author(s)